Quantized acoustic vibrations of single-wall carbon nanotube

被引:31
作者
Raichura, A [1 ]
Dutta, M
Stroscio, MA
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Chicago, IL 60607 USA
[2] Univ Illinois, Dept Bioengn, Chicago, IL 60607 USA
关键词
D O I
10.1063/1.1600846
中图分类号
O59 [应用物理学];
学科分类号
摘要
Acoustic vibrational modes are derived for both zigzag and armchair nanotubes of finite length using the continuum theory and a variational solution of Donnell's equation. Calculations of both even and odd modes of the displacement are performed. The dispersion relations are shown to vary with the length of the tube and the displacement field of the nanotube is used to calculate the deformation potential interaction Hamiltonian. (C) 2003 American Institute of Physics.
引用
收藏
页码:4060 / 4065
页数:6
相关论文
共 22 条
[1]   Nanometre-size tubes of carbon [J].
Ajayan, PM ;
Ebbesen, TW .
REPORTS ON PROGRESS IN PHYSICS, 1997, 60 (10) :1025-1062
[2]  
Dresselhaus MS, 2001, TOP APPL PHYS, V80, P1
[3]  
Dutta M., 1998, QUANTUM BASED ELECT
[4]  
DUTTA M, 2000, ADV SEMICONDUCTOR LA
[5]   Bending and buckling of carbon nanotubes under large strain [J].
Falvo, MR ;
Clary, GJ ;
Taylor, RM ;
Chi, V ;
Brooks, FP ;
Washburn, S ;
Superfine, R .
NATURE, 1997, 389 (6651) :582-584
[6]   Carbon nanotube quantum resistors [J].
Frank, S ;
Poncharal, P ;
Wang, ZL ;
de Heer, WA .
SCIENCE, 1998, 280 (5370) :1744-1746
[7]   Quantized vibrational modes of nanospheres and nanotubes in the elastic continuum model [J].
Kahn, D ;
Kim, KW ;
Stroscio, MA .
JOURNAL OF APPLIED PHYSICS, 2001, 89 (09) :5107-5111
[8]  
Kraus H., 1967, Thin Elastic Shells
[9]  
Lamb H., 1882, P LOND MATH SOC, V1-14, P50, DOI [DOI 10.1112/PLMS/S1-14.1.50, 10.1112/plms/s1-14.1.50]
[10]  
Mitin V., 1999, Quantum Hetero-Structures: Microelectronics and Optoelectronics