Long-term effects of mild salt stress on growth, ion accumulation and superoxide dismutase expression of Arabidopsis rosette leaves

被引:49
作者
Attia, Houneida [1 ]
Arnaud, Nicolas [2 ]
Karray, Najoua [1 ]
Lachaal, Mokhtar [1 ]
机构
[1] Fac Sci Tunis, Tunis El Manar 2092, Tunisia
[2] ENSA M INRA, Inst Biol Integrat Plantes, Biochim & Physiol Mol Plantes, F-34060 Montpellier, France
关键词
D O I
10.1111/j.1399-3054.2007.01009.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Arabidopsis thaliana plants (wild-type accessions Col and N1438) were submitted to a prolonged, mild salt stress using two types of protocols. These protocols allowed salt-treated plants to absorb nutrients either through a part of their root system maintained in control medium (split-rooted plants) or during episodes on control medium alternating with salt application (salt alternation experiment). Full-salt treatments (salt applied continuously to whole root system) resulted in severe (but non-lethal) growth inhibition. This effect was partly alleviated in split-rooted plants on mixed salt-control medium and in plants submitted to salt-control medium alternation. The activity of the various isoforms of superoxide dismutases (SODs) did not appreciably change with the treatments. The abundance of the mRNAs of the seven SOD genes present in Arabidopsis genome was determined using real-time polymerase chain reaction. The two protocols gave qualitatively identical results. The expression level was increased by full-salt treatments for some genes and diminished for other genes. However, the nature of these genes differed according to the accessions: the responses to salt of FSD1 and MSD were opposite in Col and N1438. In Col, salt treatments inhibited the expression of FSD1 and strongly stimulated that of CSD1 and MSD. In N1438, the stimulation by salt concerned FSD1 and CSD1 and MSD expression being inhibited. In both accessions, the expression of CSD2 and CSD3 was lowered by salt. For all genes, the treatments that mitigated stress partially restored SOD expression to control level. Thus, the changes in SOD transcript abundance accurately reflected the severity of the salt stress.
引用
收藏
页码:293 / 305
页数:13
相关论文
共 53 条
[1]   Arabidopsis thaliana ecotype Cvi shows an increased tolerance to photo-oxidative stress and contains a new chloroplastic copper/zinc superoxide dismutase isoenzyme [J].
Abarca, D ;
Roldán, M ;
Martín, M ;
Sabater, B .
JOURNAL OF EXPERIMENTAL BOTANY, 2001, 52 (360) :1417-1425
[2]   Role of superoxide dismutases (SODs) in controlling oxidative stress in plants [J].
Alscher, RG ;
Erturk, N ;
Heath, LS .
JOURNAL OF EXPERIMENTAL BOTANY, 2002, 53 (372) :1331-1341
[3]   Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress [J].
Bandeoglu, E ;
Eyidogan, F ;
Yücel, M ;
Öktem, HA .
PLANT GROWTH REGULATION, 2004, 42 (01) :69-77
[4]   Drought and salt tolerance in plants [J].
Bartels, D ;
Sunkar, R .
CRITICAL REVIEWS IN PLANT SCIENCES, 2005, 24 (01) :23-58
[5]  
Beauchamp C., 1971, ANAL BIOCHEM, V44, P276, DOI DOI 10.1016/0003-2697(71)90370-8
[6]   Identification of two loci in tomato reveals distinct mechanisms for salt tolerance [J].
Borsani, O ;
Cuartero, J ;
Fernández, JA ;
Valpuesta, V ;
Botella, MA .
PLANT CELL, 2001, 13 (04) :873-887
[7]  
BOWLER C, 1994, CRIT REV PLANT SCI, V13, P199, DOI 10.1080/713608062
[8]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[9]   The role of potassium in alleviating detrimental effects of abiotic stresses in plants [J].
Cakmak, I .
JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, 2005, 168 (04) :521-530
[10]   Screening plants for salt tolerance by measuring K+ flux:: a case study for barley [J].
Chen, Z ;
Newman, I ;
Zhou, M ;
Mendham, N ;
Zhang, G ;
Shabala, S .
PLANT CELL AND ENVIRONMENT, 2005, 28 (10) :1230-1246