On the Newtonian limit in gravity models with inverse powers of R

被引:99
作者
Dick, R [1 ]
机构
[1] Univ Saskatchewan, Dept Phys & Engn Phys, Saskatoon, SK S7N 5E2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
higher derivative gravity; cosmology; Newtonian limit;
D O I
10.1023/B:GERG.0000006968.53367.59
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
I reconsider the problem of the Newtonian limit in nonlinear gravity models in the light of recently proposed models L-grav similar to root - g f (R) with inverse powers of R. Expansion around a maximally symmetric local background with curvature scalar R-0 > 0 gives the correct Newtonian limit on length scales much less than R-0(-1/2) if the gravitational Lagrangian root - g f (R) satisfies \ f (R-0) f"(R-0) \ much less than 1, and I propose two models with f"(R-0) = 0.
引用
收藏
页码:217 / 224
页数:8
相关论文
共 18 条
[1]   THE STABILITY OF GENERAL RELATIVISTIC COSMOLOGICAL THEORY [J].
BARROW, JD ;
OTTEWILL, AC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (12) :2757-2776
[2]  
CAPOZZIELLO S, 2001, GRQC0111106
[3]  
CAPOZZIELLO S, 2003, ASTROPH0303041
[4]  
CAPOZZIELLO S, 2003, ASTROPH0307018
[5]  
CARROLL SM, 2003, ASTROPH0306438
[7]  
Kleinert H, 2002, GEN RELAT GRAVIT, V34, P1295, DOI 10.1023/A:1019786720000
[8]   PHYSICAL EQUIVALENCE BETWEEN NONLINEAR GRAVITY THEORIES AND A GENERAL-RELATIVISTIC SELF-GRAVITATING SCALAR FIELD [J].
MAGNANO, G ;
SOKOLOWSKI, LM .
PHYSICAL REVIEW D, 1994, 50 (08) :5039-5059
[9]  
Misner C., 1973, GRAVITATION
[10]   ON BIANCHI TYPE-I VACUUM SOLUTIONS IN R+R2 THEORIES OF GRAVITATION .1. THE ISOTROPIC CASE [J].
MULLER, V ;
SCHMIDT, HJ .
GENERAL RELATIVITY AND GRAVITATION, 1985, 17 (08) :769-781