Evolution of nonlinear cosmological perturbations

被引:110
作者
Langlois, D
Vernizzi, F
机构
[1] Univ Paris 07, CEA, Observ Paris, APC Astroparticules & Cosmol,UMR 7164,CNRS, F-75005 Paris, France
[2] Inst Astrophys, F-75014 Paris, France
[3] Univ Helsinki, Helsinki Inst Phys, FIN-00014 Helsinki, Finland
关键词
D O I
10.1103/PhysRevLett.95.091303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We define fully nonperturbative generalizations of the uniform density and comoving curvature perturbations, which are known, in the linear theory, to be conserved on sufficiently large scales for adiabatic perturbations. Our nonlinear generalizations are defined geometrically, independently of any coordinate system. We give the equations governing their evolution on all scales. Also, in order to make contact with previous works on first- and second-order perturbations, we introduce a coordinate system and show that previous results can be recovered, on large scales, in a remarkably simple way, after restricting our definitions to first and second orders in a perturbative expansion.
引用
收藏
页数:4
相关论文
共 21 条
[1]   Gauge-invariant second-order perturbations and non-Gaussianity from inflation [J].
Acquaviva, V ;
Bartolo, N ;
Matarrese, S ;
Riotto, A .
NUCLEAR PHYSICS B, 2003, 667 (1-2) :119-148
[2]   GAUGE-INVARIANT COSMOLOGICAL PERTURBATIONS [J].
BARDEEN, JM .
PHYSICAL REVIEW D, 1980, 22 (08) :1882-1905
[3]   Non-Gaussianity from inflation: theory and observations [J].
Bartolo, N ;
Komatsu, E ;
Matarrese, S ;
Riotto, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2004, 402 (3-4) :103-266
[4]   COSMOLOGICAL PERTURBATIONS AND THE PHYSICAL MEANING OF GAUGE-INVARIANT VARIABLES [J].
BRUNI, M ;
DUNSBY, PKS ;
ELLIS, GFR .
ASTROPHYSICAL JOURNAL, 1992, 395 (01) :34-53
[5]   GAUGE-INVARIANT PERTURBATIONS IN A SCALAR FIELD DOMINATED UNIVERSE [J].
BRUNI, M ;
ELLIS, GFR ;
DUNSBY, PKS .
CLASSICAL AND QUANTUM GRAVITY, 1992, 9 (04) :921-945
[6]  
Ellis G.F.R., 1971, GEN RELATIVITY COSMO
[7]   COVARIANT AND GAUGE-INVARIANT APPROACH TO COSMOLOGICAL DENSITY-FLUCTUATIONS [J].
ELLIS, GFR ;
BRUNI, M .
PHYSICAL REVIEW D, 1989, 40 (06) :1804-1818
[8]  
KODAMA H, 1984, SUP PROG THEOR PHYS, V78, P1
[9]   A general proof of the conservation of the curvature perturbation [J].
Lyth, DH ;
Malik, KA ;
Sasaki, M .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2005, (05) :50-69
[10]   Conserved cosmological perturbations [J].
Lyth, DH ;
Wands, D .
PHYSICAL REVIEW D, 2003, 68 (10)