Instability of magnetic modons and analogous Euler flows

被引:4
作者
Chui, AYK
Moffatt, HK
机构
关键词
D O I
10.1017/S0022377800019528
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We construct numerical examples of a 'modon' (counter-rotating vortices) in an Euler flow by exploiting the analogy between steady Euler hows and magnetostatic equilibria in a perfectly conducting fluid. A numerical modon solution can be found by determining its corresponding magnetostatic equilibrium, which we refer to as a 'magnetic modon'. Such an equilibrium is obtained numerically by a relaxation procedure that conserves the topology of the relaxing field. Our numerical results show how the shape of a magnetic modon depends on its 'signature' (magnetic flux profile), and that these magnetic modons are unexpectedly unstable to nonsymmetric perturbations. Diffusion can change the topology of the field through a reconnection process and separate the two magnetic eddies. We further show that the analogous Euler flow (or modon) behaves similar to a perturbed Hill's vortex.
引用
收藏
页码:677 / 691
页数:15
相关论文
共 11 条
[1]  
Arakawa A., 1966, J COMPUT PHYS, V1, P119, DOI [DOI 10.1016/0021-9991(66)90015-5, 10.1016/0021-9991(66)90015-5]
[2]   NUMERICAL STUDY OF ELLIPTIC MODONS USING A SPECTRAL METHOD [J].
BOYD, JP ;
MA, H .
JOURNAL OF FLUID MECHANICS, 1990, 221 :597-611
[3]   GLOBAL STABILITY OF 2-DIMENSIONAL AND AXISYMMETRICAL EULER FLOWS [J].
DAVIDSON, PA .
JOURNAL OF FLUID MECHANICS, 1994, 276 :273-305
[4]   A COMPUTATIONAL METHOD OF SOLVING FREE-BOUNDARY PROBLEMS IN VORTEX DYNAMICS [J].
EYDELAND, A ;
TURKINGTON, B .
JOURNAL OF COMPUTATIONAL PHYSICS, 1988, 78 (01) :194-214
[5]   DETERMINATION OF 2-DIMENSIONAL MAGNETOSTATIC EQUILIBRIA AND ANALOGOUS EULER FLOWS [J].
LINARDATOS, D .
JOURNAL OF FLUID MECHANICS, 1993, 246 :569-591
[6]   RESPONSE OF HILLS SPHERICAL VORTEX TO A SMALL AXISYMMETRIC DISTURBANCE [J].
MOFFATT, HK ;
MOORE, DW .
JOURNAL OF FLUID MECHANICS, 1978, 87 (AUG) :749-760
[10]   THE NONLINEAR INSTABILITY OF HILL VORTEX [J].
POZRIKIDIS, C .
JOURNAL OF FLUID MECHANICS, 1986, 168 :337-367