Non-negative matrix factorization for polyphonic music transcription

被引:194
作者
Smaragdis, P [1 ]
Brown, JC [1 ]
机构
[1] Mitsubishi Elect Res Lab, Cambridge, MA 02139 USA
来源
2003 IEEE WORKSHOP ON APPLICATIONS OF SIGNAL PROCESSING TO AUDIO AND ACOUSTICS PROCEEDINGS | 2003年
关键词
D O I
10.1109/aspaa.2003.1285860
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper we present a methodology for analyzing polyphonic musical passages comprised by notes that exhibit a harmonically fixed spectral profile (such as piano notes). Taking advantage of this unique note structure we can model the audio content of the musical passage by a linear basis transform and use non-negative matrix decomposition methods to estimate the spectral profile and the temporal information of every note. This approach results in a very simple and compact system that is not knowledge-based, but rather learns notes by observation.
引用
收藏
页码:177 / 180
页数:4
相关论文
共 8 条
  • [1] BARLOW HB, 1959, S MECH THOUGHT PROC
  • [2] HOYER P, 2002, NEURAL NETWORKS SIGN, V12
  • [3] JARRETT K, 1988, ECM RECORDS
  • [4] Learning the parts of objects by non-negative matrix factorization
    Lee, DD
    Seung, HS
    [J]. NATURE, 1999, 401 (6755) : 788 - 791
  • [6] Conditions for nonnegative independent component analysis
    Plumbley, M
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2002, 9 (06) : 177 - 180
  • [7] Automatic music transcription and audio source separation
    Plumbley, MD
    Abdallah, SA
    Bello, JP
    Davies, ME
    Monti, G
    Sandler, MB
    [J]. CYBERNETICS AND SYSTEMS, 2002, 33 (06) : 603 - 627
  • [8] SMARAGDIS P, 2001, THESIS MIT