Quantum adiabatic search with decoherence in the instantaneous energy eigenbasis -: art. no. 042317

被引:28
作者
Åberg, J [1 ]
Kult, D [1 ]
Sjöqvist, E [1 ]
机构
[1] Uppsala Univ, Dept Quantum Chem, SE-75120 Uppsala, Sweden
来源
PHYSICAL REVIEW A | 2005年 / 72卷 / 04期
关键词
D O I
10.1103/PhysRevA.72.042317
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In Phys. Rev. A 71, 060312(R) (2005), the robustness of the local adiabatic quantum search to decoherence in the instantaneous eigenbasis of the search Hamiltonian was examined. We expand this analysis to include the case of the global adiabatic quantum search. As in the case of the local search the asymptotic time complexity for the global search is the same as for the ideal closed case, as long as the Hamiltonian dynamics is present. In the case of pure decoherence, where the environment monitors the search Hamiltonian, we find that the time complexity of the global quantum adiabatic search scales like N-3/2, where N is the list length. We moreover extend the analysis to include success probabilities p < 1 and prove bounds on the run time with the same scaling as in the conditions for the p -> 1 limit. We supplement the analytical results by numerical simulations of the global and local search.
引用
收藏
页数:16
相关论文
共 24 条
[1]   Robustness of the adiabatic quantum search -: art. no. 060312 [J].
Åberg, J ;
Kult, D ;
Sjöqvist, E .
PHYSICAL REVIEW A, 2005, 71 (06)
[2]   Adiabatic quantum computation is equivalent to standard quantum computation [J].
Aharonov, D ;
van Dam, W ;
Kempe, J ;
Landau, Z ;
Lloyd, S ;
Regev, O .
45TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2004, :42-51
[3]  
[Anonymous], 1990, GRUYTER STUDIES MATH
[4]  
Birkhoff G., 1962, ORDINARY DIFFERENTIA
[5]   Genuine quantum trajectories for non-Markovian processes [J].
Breuer, HP .
PHYSICAL REVIEW A, 2004, 70 (01) :012106-1
[6]   Robustness of adiabatic quantum computation [J].
Childs, AM ;
Farhi, E ;
Preskill, J .
PHYSICAL REVIEW A, 2002, 65 (01) :123221-1232210
[7]   A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem [J].
Farhi, E ;
Goldstone, J ;
Gutmann, S ;
Lapan, J ;
Lundgren, A ;
Preda, D .
SCIENCE, 2001, 292 (5516) :472-476
[8]  
FARHI E, QUANPH0001106
[9]   Quantum mechanics helps in searching for a needle in a haystack [J].
Grover, LK .
PHYSICAL REVIEW LETTERS, 1997, 79 (02) :325-328
[10]  
KAMINSKY WM, QUANTPH0211152