PGG-Glucan, a soluble beta-(1,6)-branched beta-(1,5)-linked glucose homopolymer derived from the cell wall of the yeast Saccharomyces cerevisiae, is an immunomodulator which enhances leukocyte anti-infective activity and enhances myeloid and megakaryocyte progenitor proliferation. Incubation of human whole blood with PGG-Glucan significantly enhanced the oxidative burst response of subsequently isolated blood leukocytes to both soluble and particulate activators in a dose-dependent manner, and increased leukocyte microbicidal activity. No evidence for inflammatory cytokine production was obtained under these conditions. Electrophoretic mobility shift assays demonstrated that PGG-Glucan induced the activation of an NF-kappa B-like nuclear transcription factor in purified human neutrophils. The binding of H-3-PGG-Glucan to human leukocyte membranes was specific, concentration-dependent, saturable, and high affinity (K-d similar to 6 nM). A monoclonal antibody specific to the glycosphingolipid lactosylceramide was able to inhibit activation of the NF-kappa B-like factor by PGG-Glucan, and ligand binding data, including polysaccharide specificity, suggested that the PGG-Glucan binding moiety was lactosylceramide. These results indicate that PGG-Glucan enhances neutrophil anti-microbial functions and that interaction between this beta-glucan and human neutrophils is mediated by the glycosphingolipid lactosylceramide present at the cell surface. (C) 1999 Published by Elsevier Science B.V. All rights reserved.