Transcriptional and translational regulation of major heat shock proteins and patterns of trehalose mobilization during hyperthermic recovery in repressed and derepressed Saccharomyces cerevisiae

被引:12
作者
Gross, C [1 ]
Watson, K [1 ]
机构
[1] Univ New England, Dept Cellular & Mol Biol, Sch Biol Sci, Armidale, NSW 2351, Australia
关键词
thermotolerance; hyperthermic recovery; hsp transcription; hsp translation; trehalose;
D O I
10.1139/cjm-44-4-341
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Patterns of heat shock gene transcription and translation, as well as trehalose content, were investigated in both glucose (repressed) and acetate (derepressed) grown cells of Saccharomyces cerevisiae during heat shock and subsequent return of cells to 25 degrees C. Heat-shocked cells (37 degrees C for 30 min), grown in either glucose- or acetate-supplemented media, initially acquired high thermotolerance to a 50 degrees C heat stress, which was progressively lost when cultures were allowed to recover at 25 degrees C and subsequently exposed to a second heat stress. In all cases, with the notable exception of repressed cells of a relatively thermosensitive strain, inhibition of protein synthesis and coincident decrease in trehalose accumulation during the heat shock had little effect on the kinetics of loss of thermotolerance. Hear shock at 37 degrees C elicited a marked increase in transcription and translation of genes encoding major heat shock proteins (hsps). During recovery at 25 degrees C, both metabolic activities were suppressed followed by a gradual increase in hsp mRNA transcription to levels observed prior to heat shock. De novo translation of hsp mRNAs, however, was no longer observed during the recovery phase, although immunodetection analyses demonstrated persistence of high levels of hsps 104, 90, 70, and 60 in cells throughout the 240-min recovery period. In addition, while heat shock induced trehalose was rapidly degraded during recovery in repressed cells, levels remained high in derepressed cells. Results therefore indicated that the progressive loss of induced thermotolerance exhibited by glucose- and acetate-grown cells was not closely correlated with levels of hsp or trehalose. It was concluded that both constitutive and de novo synthesized hsps require heat shock associated activation to confer thermotolerance and this modification is progressively reversed upon release from the heat-shocked state.
引用
收藏
页码:341 / 350
页数:10
相关论文
共 47 条
[1]   ABNORMAL PROTEINS SERVE AS EUKARYOTIC STRESS SIGNALS AND TRIGGER THE ACTIVATION OF HEAT-SHOCK GENES [J].
ANANTHAN, J ;
GOLDBERG, AL ;
VOELLMY, R .
SCIENCE, 1986, 232 (4749) :522-524
[2]  
Ausubel F.M., 1988, CURRENT PROTOCOLS MO
[3]   THERMOTOLERANCE IS INDEPENDENT OF INDUCTION OF THE FULL SPECTRUM OF HEAT-SHOCK PROTEINS AND OF CELL-CYCLE BLOCKAGE IN THE YEAST SACCHAROMYCES-CEREVISIAE [J].
BARNES, CA ;
JOHNSTON, GC ;
SINGER, RA .
JOURNAL OF BACTERIOLOGY, 1990, 172 (08) :4352-4358
[4]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[5]   LOSS OF HEAT-SHOCK ACQUISITION OF THERMOTOLERANCE IN YEAST IS NOT CORRELATED WITH LOSS OF HEAT-SHOCK PROTEINS [J].
CAVICCHIOLI, R ;
WATSON, K .
FEBS LETTERS, 1986, 207 (01) :149-152
[6]   INDUCTION OF INCREASED THERMOTOLERANCE IN SACCHAROMYCES-CEREVISIAE MAY BE TRIGGERED BY A MECHANISM INVOLVING INTRACELLULAR PH [J].
COOTE, PJ ;
COLE, MB ;
JONES, MV .
JOURNAL OF GENERAL MICROBIOLOGY, 1991, 137 :1701-1708
[7]   HEAT-SHOCK PROTEINS - MOLECULAR CHAPERONES OF PROTEIN BIOGENESIS [J].
CRAIG, EA ;
GAMBILL, BD ;
NELSON, RJ .
MICROBIOLOGICAL REVIEWS, 1993, 57 (02) :402-414
[8]   ACQUISITION OF THERMOTOLERANCE IN SACCHAROMYCES-CEREVISIAE WITHOUT HEAT-SHOCK PROTEIN HSP-104 AND IN THE ABSENCE OF PROTEIN-SYNTHESIS [J].
DEVIRGILIO, C ;
PIPER, P ;
BOLLER, T ;
WIEMKEN, A .
FEBS LETTERS, 1991, 288 (1-2) :86-90
[9]   STRESS RESISTANCE OF YEAST-CELLS IS LARGELY INDEPENDENT OF CELL-CYCLE PHASE [J].
ELLIOTT, B ;
FUTCHER, B .
YEAST, 1993, 9 (01) :33-42
[10]  
Elliott B, 1996, GENETICS, V144, P923