On the contribution of vibrational anharmonicity to the binding energies of water clusters

被引:39
作者
Diri, K
Myshakin, EM
Jordan, KD [1 ]
机构
[1] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA
[2] Univ Pittsburgh, Ctr Mol & Mat Simulat, Pittsburgh, PA 15260 USA
关键词
D O I
10.1021/jp050004w
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The second-order vibrational perturbation theory method has been used together with the B3LYP and MP2 electronic structure methods to investigate the effects of anharmonicity on the vibrational zero-point energy (ZPE) contributions to the binding energies of (H2O)n, n = 2-6, clusters. For the low-lying isomers of (H2O)(6), the anharmonicity correction to the binding energy is calculated to range from -248 to -355 cm(-1). It is also demonstrated that although high-order electron correlation effects are important for the individual vibrational frequencies, they are relatively unimportant for the net ZPE contributions to the binding energies of water clusters.
引用
收藏
页码:4005 / 4009
页数:5
相关论文
共 70 条