The DNA-Binding Domain of Human PARP-1 Interacts with DNA Single-Strand Breaks as a Monomer through Its Second Zinc Finger

被引:142
作者
Eustermann, Sebastian [1 ]
Videler, Hortense [1 ]
Yang, Ji-Chun [1 ]
Cole, Paul T. [1 ]
Gruszka, Dominika [1 ]
Veprintsev, Dmitry [1 ]
Neuhaus, David [1 ]
机构
[1] MRC Lab Mol Biol, Cambridge CB2 0QH, England
关键词
poly(ADP ribose)polymerase-1; zinc finger; solution structure; DNA repair; DNA single-strand breaks; HUMAN POLY(ADP-RIBOSE) POLYMERASE-1; ADP-RIBOSYLATION; LIGASE-III; IDENTIFICATION; ENZYME; REPAIR; RECOGNITION; CLEAVAGE; MACROMOLECULES; TRANSCRIPTION;
D O I
10.1016/j.jmb.2011.01.034
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Poly(ADP-ribose)polymerase-1 (PARP-1) is a highly abundant chromatin-associated enzyme present in all higher eukaryotic cell nuclei, where it plays key roles in the maintenance of genomic integrity, chromatin remodeling and transcriptional control. It binds to DNA single- and double-strand breaks through an N-terminal region containing two zinc fingers, F1 and F2, following which its C-terminal catalytic domain becomes activated via an unknown mechanism, causing formation and addition of polyadenosine-ribose (PAR) to acceptor proteins including PARP-1 itself. Here, we report a biophysical and structural characterization of the F1 and F2 fingers of human PARP-1, both as independent fragments and in the context of the 24-kDa DNA-binding domain (F1 + F2). We show that the fingers are structurally independent in the absence of DNA and share a highly similar structural fold and dynamics. The F1 + F2 fragment recognizes DNA single-strand breaks as a monomer and in a single orientation. Using a combination of NMR spectroscopy and other biophysical techniques, we show that recognition is primarily achieved by F2, which binds the DNA in an essentially identical manner whether present in isolation or in the two-finger fragment. F2 interacts much more strongly with nicked or gapped DNA ligands than does F1, and we present a mutational study that suggests origins of this difference. Our data suggest that different DNA lesions are recognized by the DNA-binding domain of PARP-1 in a highly similar conformation, helping to rationalize how the full-length protein participates in multiple steps of DNA single-strand breakage and base excision repair. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:149 / 170
页数:22
相关论文
共 69 条
[1]   POLY(ADP-RIBOSE) SYNTHASE IS THE MAJOR ENDOGENOUS NONHISTONE ACCEPTOR FOR POLY(ADP-RIBOSE) IN ALKYLATED RAT HEPATOMA-CELLS [J].
ADAMIETZ, P .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1987, 169 (02) :365-372
[2]   Molecular mechanism of poly(ADP-ribosyl)ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites [J].
Altmeyer, Matthias ;
Messner, Simon ;
Hassa, Paul O. ;
Fey, Monika ;
Hottiger, Michael O. .
NUCLEIC ACIDS RESEARCH, 2009, 37 (11) :3723-3738
[3]   Poly-(ADP-ribose) polymerase-1 (Parp-1) binds in a sequence-specific manner at the Bcl-6 locus and contributes to the regulation of Bcl-6 transcription [J].
Ambrose, H. E. ;
Papadopoulou, V. ;
Beswick, R. W. ;
Wagner, S. D. .
ONCOGENE, 2007, 26 (42) :6244-6252
[4]   The PARP superfamily [J].
Amé, JC ;
Spenlehauer, C ;
de Murcia, G .
BIOESSAYS, 2004, 26 (08) :882-893
[5]  
BENJAMIN RC, 1980, J BIOL CHEM, V255, P502
[7]   PARP-1, a determinant of cell survival in response to DNA damage [J].
Bouchard, WJ ;
Rouleau, M ;
Poirier, GG .
EXPERIMENTAL HEMATOLOGY, 2003, 31 (06) :446-454
[8]   Rapid identification of medium- to large-scale interdomain motion in modular proteins using dipolar couplings [J].
Braddock, DT ;
Cai, ML ;
Baber, JL ;
Huang, Y ;
Clore, GM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (35) :8634-8635
[9]   PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination [J].
Bryant, Helen E. ;
Petermann, Eva ;
Schultz, Niklas ;
Jemth, Ann-Sofie ;
Loseva, Olga ;
Issaeva, Natalia ;
Johansson, Fredrik ;
Fernandez, Serena ;
McGlynn, Peter ;
Helleday, Thomas .
EMBO JOURNAL, 2009, 28 (17) :2601-2615
[10]   Mammalian single-strand break repair: Mechanisms and links with chromatin [J].
Caldecott, Keith W. .
DNA REPAIR, 2007, 6 (04) :443-453