Sufficiency of a finite exponent in SIMP (power law) methods

被引:251
作者
Rietz, A [1 ]
机构
[1] Linkoping Univ, Dept Mech Engn, S-58183 Linkoping, Sweden
关键词
artificial power law; solid isotropic material with penalization; topology optimization of structures; discrete optimization; penalty methods;
D O I
10.1007/s001580050180
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A common way to perform discrete optimization in shape or topology optimization is to use a method called the artificial power law or SIMP. The focus of this paper is to show that this method gives a, discrete solution under some conditions. Examples from topology optimization are included for illustrative purposes.
引用
收藏
页码:159 / 163
页数:5
相关论文
共 7 条
[1]  
BENDSOE M, 1999, 615 DTU DEP MATH
[2]  
Bendsoe MP., 1995, OPTIMIZATION STRUCTU, DOI DOI 10.1007/978-3-662-03115-5
[3]  
Bendsoe MP., 1989, Struct Multidisc Optim, V1, P193, DOI [10.1007/BF01650949, DOI 10.1007/BF01650949]
[4]  
Bertsekas D. P., 1999, NONLINEAR PROGRAMMIN, V2nd
[5]   Some convergence results in perimeter-controlled topology optimization [J].
Petersson, J .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 171 (1-2) :123-140
[6]   FINITE-ELEMENT METHOD FOR OPTIMAL DESIGN OF VARIABLE THICKNESS SHEETS [J].
ROSSOW, MP ;
TAYLOR, JE .
AIAA JOURNAL, 1973, 11 (11) :1566-1569
[7]   THE COC ALGORITHM .2. TOPOLOGICAL, GEOMETRICAL AND GENERALIZED SHAPE OPTIMIZATION [J].
ZHOU, M ;
ROZVANY, GIN .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1991, 89 (1-3) :309-336