Control of the hypoxic response through regulation of mRNA translation

被引:127
作者
Wouters, BG [1 ]
van den Beucken, T
Magagnin, MG
Koritzinsky, M
Fels, D
Koumenis, C
机构
[1] Wake Forest Univ, Sch Med, Dept Radiat Oncol, Winston Salem, NC 27157 USA
[2] Wake Forest Univ, Sch Med, Dept Canc Biol, Winston Salem, NC 27157 USA
[3] Wake Forest Univ, Sch Med, Dept Neurosurg, Winston Salem, NC 27157 USA
[4] Univ Maastricht, Dept Radiat Oncol, Maastricht Radiat Oncol Lab, GROW Res Inst, NL-6200 MD Maastricht, Netherlands
关键词
hypoxia; translation; PERK; ATF4; CHOP; eIF4E;
D O I
10.1016/j.semcdb.2005.03.009
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Hypoxia is a common feature of most solid tumors which negatively impacts their treatment response. This is due in part to the biological changes that result from a coordinated cellular response to hypoxia. A large part of this response is driven by a transcriptional program initiated via stabilization of HIF, promoting both angiogenesis and cell survival. However, hypoxia also results in a rapid inhibition of protein synthesis which occurs through the repression of the initiation step of mRNA translation. This inhibition is fully reversible and occurs in all cell lines tested to date. Inhibition of translation is mediated by two distinct mechanisms during hypoxia. The first is through phosphorylation and inhibition of an essential eukaryotic initiation factor, eIF2 alpha. Phosphorylation of this factor occurs through activation of the PERK kinase as part of a coordinated ER stress response program known as the UPR. Activation of this program promotes cell survival during hypoxia and facilitates tumor growth. Translation during hypoxia can also be inhibited through the inactivation of a second eukaryotic initiation complex, eIF4F. At least part of this inhibition is mediated through a REDD1 and TSC1/TSC2 dependent inhibition of the mTOR kinase. Inhibition of mRNA translation is hypothesized to affect the cellular tolerance to hypoxia in part by promoting energy homeostasis. However, regulation of translation also results in a specific increase in the synthesis of a subset of hypoxia induced proteins. Consequently, both arms of translational control during hypoxia influence hypoxia induced gene expression and the hypoxic phenotype. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:487 / 501
页数:15
相关论文
共 136 条
[1]   Anoxic induction of ATF-4 through HIF-1-independent pathways of protein stabilization in human cancer cells [J].
Ameri, K ;
Lewis, CE ;
Raida, M ;
Sowter, H ;
Hai, TW ;
Harris, AL .
BLOOD, 2004, 103 (05) :1876-1882
[2]   A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets [J].
Arsham, AM ;
Howell, JJ ;
Simon, MC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (32) :29655-29660
[3]   EFFECT OF PROTEIN DEGRADATION ON CELLULAR GROWTH-CHARACTERISTICS [J].
BAXTER, GC ;
STANNERS, CP .
JOURNAL OF CELLULAR PHYSIOLOGY, 1978, 96 (02) :139-145
[4]   ACTIVATION OF THE HEAT-SHOCK TRANSCRIPTION FACTOR BY HYPOXIA IN MAMMALIAN-CELLS [J].
BENJAMIN, IJ ;
KROGER, B ;
WILLIAMS, RS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (16) :6263-6267
[5]  
BERRY MJ, 1985, J BIOL CHEM, V260, P1240
[6]   Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response [J].
Bertolotti, A ;
Zhang, YH ;
Hendershot, LM ;
Harding, HP ;
Ron, D .
NATURE CELL BIOLOGY, 2000, 2 (06) :326-332
[7]   Activating transcription factor 4 is translationally regulated by hypoxic stress [J].
Blais, JD ;
Filipenko, V ;
Bi, MX ;
Harding, HP ;
Ron, D ;
Koumenis, C ;
Wouters, BG ;
Bell, JC .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (17) :7469-7482
[8]   IRESdb:: the internal ribosome entry site database [J].
Bonnal, S ;
Boutonnet, C ;
Prado-Lourenço, L ;
Vagner, S .
NUCLEIC ACIDS RESEARCH, 2003, 31 (01) :427-428
[9]   Levels of hypoxia-inducible factor-1α during breast carcinogenesis [J].
Bos, R ;
Zhong, H ;
Hanrahan, CF ;
Mommers, ECM ;
Semenza, GL ;
Pinedo, HM ;
Abeloff, MD ;
Simons, JW ;
van Diest, PJ ;
van der Wall, E .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2001, 93 (04) :309-314
[10]   LKB1, a protein kinase regulating cell proliferation and polarity [J].
Boudeau, J ;
Sapkota, G ;
Alessi, DR .
FEBS LETTERS, 2003, 546 (01) :159-165