Quantum capacity is properly defined without encodings

被引:29
作者
Barnum, H [1 ]
Smolin, JA
Terhal, BM
机构
[1] Hampshire Coll, Sch Nat Sci, Amherst, MA 01022 USA
[2] Hampshire Coll, Inst Sci & Interdisciplinary Studies, Amherst, MA 01022 USA
[3] IBM Corp, Div Res, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
[4] Univ Amsterdam, Fac Wiskunde Informatica Nat Sterrenkunde, NL-1018 XE Amsterdam, Netherlands
[5] Ctr Wiskunde & Informat, NL-1098 SJ Amsterdam, Netherlands
来源
PHYSICAL REVIEW A | 1998年 / 58卷 / 05期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevA.58.3496
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show that no source encoding is needed in the definition of the capacity of a quantum channel for carrying quantum information. This allows us to use the coherent information maximized over all sources and block sizes, but not encodings, to bound the quantum capacity. We perform an explicit calculation of this maximum coherent information for the quantum erasure channel and apply the bound in order find the erasure channel's capacity without relying on an unproven assumption as in an earlier paper. [S1050-2947(98)00911-1].
引用
收藏
页码:3496 / 3501
页数:6
相关论文
共 22 条
[1]   von Neumann capacity of noisy quantum channels [J].
Adami, C ;
Cerf, NJ .
PHYSICAL REVIEW A, 1997, 56 (05) :3470-3483
[2]   Information transmission through a noisy quantum channel [J].
Barnum, H ;
Nielsen, MA ;
Schumacher, B .
PHYSICAL REVIEW A, 1998, 57 (06) :4153-4175
[3]  
BARNUM H, 1997, THESIS U NEW MEXICO
[4]  
BARNUM H, QUANTPH9702049
[5]  
BARNUM H, QUANTPH9809010
[6]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[7]   Capacities of quantum erasure channels [J].
Bennett, CH ;
DiVincenzo, DP ;
Smolin, JA .
PHYSICAL REVIEW LETTERS, 1997, 78 (16) :3217-3220
[8]  
Bhattacharyya A., 1943, B CALCUTTA MATH SOC, V35, P99, DOI DOI 10.1038/157869B0
[9]   Optimal universal and state-dependent quantum cloning [J].
Bruss, D ;
DiVincenzo, DP ;
Ekert, A ;
Fuchs, CA ;
Macchiavello, C ;
Smolin, JA .
PHYSICAL REVIEW A, 1998, 57 (04) :2368-2378
[10]  
BRUSS D, QUANTPH9705038