Is the semi-classical analysis valid for extreme black holes?

被引:13
作者
Alvarenga, FG [1 ]
Batista, AB [1 ]
Fabris, JC [1 ]
Marques, GT [1 ]
机构
[1] Univ Fed Espirito Santo, Dept Fis, BR-29060900 Vitoria, Espirito Santo, Brazil
关键词
black thermodynamics;
D O I
10.1016/j.physleta.2003.11.010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The surface gravity for the extreme Reissner-Nordstrom black hole is zero suggesting that it has a zero temperature. However, the direct evaluation of the Bogolubov's coefficients, using the standard semi-classical analysis, indicates that the temperature of the extreme black hole is ill definite: the Bogolubov's coefficients obtained by performing the usual analysis of a collapsing model of a thin shell, and employing the geometrical optical approximation, do not obey the normalization conditions. We argue that the failure of the employment of semi-classical analysis for the extreme black hole is due to the absence of orthonormal quantum modes in the vicinity of the event horizon in this particular case. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:83 / 94
页数:12
相关论文
共 23 条
[1]   Do semiclassical zero temperature black holes exist? [J].
Anderson, PR ;
Hiscock, WA ;
Taylor, BE .
PHYSICAL REVIEW LETTERS, 2000, 85 (12) :2438-2441
[2]   QUANTUM FIELD-THEORY IN ANTI-DE SITTER SPACE-TIME [J].
AVIS, SJ ;
ISHAM, CJ ;
STOREY, D .
PHYSICAL REVIEW D, 1978, 18 (10) :3565-3576
[3]  
Birrell N. D., 1982, QUANTUM FIELDS CURVE
[4]   NAKED SINGULARITIES, THIN SHELLS, AND REISSNER-NORDSTROM METRIC [J].
BOULWARE, DG .
PHYSICAL REVIEW D, 1973, 8 (08) :2363-2368
[5]   A PRIMER FOR BLACK-HOLE QUANTUM PHYSICS [J].
BROUT, R ;
MASSAR, S ;
PARENTANI, R ;
SPINDEL, P .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1995, 260 (06) :329-446
[6]  
Castiñeiras J, 2002, PHYS REV D, V65, DOI 10.1103/PhysRevD.65.104019
[7]  
DOUGLAS MR, HEPTH9902022
[8]  
FORD LH, 1998, P 9 JORG ANDR SWIEC
[9]  
GAO S, GRQC0207029
[10]   ENTROPY FOR EXTREMAL REISSNER-NORDSTROM BLACK-HOLES [J].
GHOSH, A ;
MITRA, P .
PHYSICS LETTERS B, 1995, 357 (03) :295-299