The effects of the specific adsorption of anion on the reactivity of the Ru(0001) surface towards CO adsorption and oxidation:: in situ FTIRS studies

被引:21
作者
Jin, J. M. [1 ]
Lin, W. F. [1 ]
Christensen, P. A. [1 ]
机构
[1] Newcastle Univ, Sch Chem Engn & Adv Mat, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
关键词
D O I
10.1039/b802701c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The dynamics of adsorption and oxidation of CO on Ru(0001) electrode in sulfuric acid solution have been studied using in situ FTIR spectroscopy under potential control and at open circuit, the latter at 20 and 55 degrees C. The in situ IR data show clearly that the bisulfate anion adsorbs on the Ru(0001) surface over the potential range from -200 mV to 350 mV (vs. Ag/AgCl) at 20 degrees C in the absence and presence of adsorbed CO; however, increasing the temperature to 55 degrees C and/ or increasing the concentration of dissolved O-2 reduces the bisulfate adsorption. The formation of surface (hydro-) oxide at higher potentials replaces the bisulfate adsorbates. Both linear (COL) and three-fold hollow bonded CO (COH) adsorbates were produced following CO adsorption at Ru(0001) in H2SO4, as was observed in our previous studies in HClO4. However, the amount of adsorbed CO observed in H2SO4 was ca. 10% less than that in HClO4; in addition, the COL and COH frequencies were higher in H2SO4, and the onset potential for COads oxidation 25 mV lower. These new results are interpreted in terms of a model in which the adsorbed bisulfate weakens the CO adlayer, allowing the active Ru oxide layer to form at lower potentials. Significantly different results were observed at open circuit in H2SO4 compared both to the data under potential control and to our earlier data in HClO4, and these observations were rationalized in terms of the adsorbed HSO4- anions (pre-adsorbed at -200 mV) inhibiting the oxidation of the surface at open circuit (after stepping from the initial potential of -200 mV), as the latter was no longer driven by the imposed electrochemical potential but via chemical oxidation by trace dissolved O-2. Results from experiments at open circuit at 55 degrees C and using oxygen-saturated H2SO4 supported this model. The difference in Ru surface chemistry between imposed electrochemical control and chemical control has potential implications with respect to fuel cell electrocatalysis.
引用
收藏
页码:3774 / 3783
页数:10
相关论文
共 74 条
[1]   Effect of oxygen precoverage on the reactivity of methanol on Ru(001) surfaces [J].
Barros, RB ;
Garcia, AR ;
Ilharco, LM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (15) :4831-4839
[2]   Phonon- versus electron-mediated desorption and oxidation of CO on Ru(0001) [J].
Bonn, M ;
Funk, S ;
Hess, C ;
Denzler, DN ;
Stampfl, C ;
Scheffler, M ;
Wolf, M ;
Ertl, G .
SCIENCE, 1999, 285 (5430) :1042-1045
[3]   CO oxidation reaction over oxygen-rich Ru(0001) surfaces [J].
Böttcher, A ;
Niehus, H ;
Schwegmann, S ;
Over, H ;
Ertl, G .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (51) :11185-11191
[4]   Electrosorption and catalytic properties of bare and Pt modified single crystal and nanostructured Ru surfaces [J].
Brankovic, SR ;
Wang, JX ;
Zhu, Y ;
Sabatini, R ;
McBreen, J ;
Adzic, RR .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2002, 524 :231-241
[5]   Carbon monoxide oxidation on bare and Pt-modified Ru(1010) and Ru(0001) single crystal electrodes [J].
Brankovic, SR ;
Marinkovic, NS ;
Wang, JX ;
Adzic, RR .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2002, 532 (1-2) :57-66
[6]   Spontaneous deposition of Pd on a Ru(0001) surface [J].
Brankovic, SR ;
McBreen, J ;
Adzic, RR .
SURFACE SCIENCE, 2001, 479 (1-3) :L363-L368
[7]   Spontaneous deposition of Pt on the Ru(0001) surface [J].
Brankovic, SR ;
McBreen, J ;
Adzic, RR .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2001, 503 (1-2) :99-104
[8]   Identification of CO adsorbed at Ru and Pt sites on a polycrystalline Pt/Ru electrode and the observation of their oxidation and free interchange under open circuit conditions [J].
Christensen, PA ;
Jin, JM ;
Lin, WF ;
Hamnett, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (11) :3391-3394
[9]   Methanol electro-oxidation on unsupported Pt-Ru alloys at different temperatures [J].
Chu, D ;
Gilman, S .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (05) :1685-1690
[10]   New information about the electrochemical behaviour of Ru(0001) in perchloric acid solutions [J].
El-Aziz, AM ;
Kibler, LA .
ELECTROCHEMISTRY COMMUNICATIONS, 2002, 4 (11) :866-870