A model of spur gears supported by ball bearings

被引:12
作者
Viadero, F. [1 ]
del Rincon, A. Fernandez [1 ]
Sancibrian, R. [1 ]
Garcia Fernandez, P. [1 ]
de Juan, A. [1 ]
机构
[1] Univ Cantabria, Dept Struct & Mech Engn, E-39005 Santander, Spain
来源
COMPUTATIONAL METHODS AND EXPERIMENTAL MEASUREMENTS XIII | 2007年 / 46卷
关键词
gear; transmission error; bearings; tooth contact; load ratio;
D O I
10.2495/CMEM070701
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work a model of a 2D spur gear transmission is described for analysis of tooth contact forces and deformations. Assuming the position of each wheel is known, the contact points between gears are obtained taking into account the geometric description of the tooth profiles including profile errors and relief modifications. Then the deformation in each contact point is separated into a global and a local term combining a finite element model and an analytical formulation originating from Hertzian contact theory. The proposed procedure does not need new element meshing for each angular position thus obtaining an important computational advantage. Afterwards, a non-linear system of equations is obtained and solved for each gear position in order to calculate the meshing contact forces. The model can include the possibility of bidirectional single-flank or double-flank action as well as friction forces in the out-of-action line. Once the contact forces are known, it is possible to use the procedure in the calculation of loaded transmission error and meshing stiffness. Furthermore, each gear is supported by ball bearings that are included in the model taking into account their clearance and their variable stiffness due to the change in the number of balls supporting the load. This variable bearing compliance modifies the gear centre distance and as a consequence the transmission error during a turn. Using this methodology a numerical example is presented where the static behaviour of a spur gear transmission is described and analysed. Special attention is focused on the influence of load level on the final loaded transmission error.
引用
收藏
页码:711 / +
页数:3
相关论文
共 13 条
[1]  
[Anonymous], 1999, GEAR NOISE VIBRATION
[2]  
BONORI G, 2004, P ASME INT MECH ENG
[3]  
CAI Y, 1994, J MECH DESIGN, V116, P558, DOI DOI 10.1115/1.2919414
[4]   The dynamic modelling of a spur gear in mesh including friction and a crack [J].
Howard, I ;
Jia, SX ;
Wang, JD .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2001, 15 (05) :831-853
[5]  
Kuang J.H., 1992, P ASME INT POW TRANS
[6]  
Litvin FL., 2004, Gear Geometry and Applied Theory
[7]   An analytical method to determine the influence of shape deviation on load distribution and mesh stiffness for spur gears [J].
MacLennan, LD .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2002, 216 (10) :1005-1016
[8]   Dynamic modelling of spur gear pair and application of empirical mode decomposition-based statistical analysis for early detection of localized tooth defect [J].
Parey, A. ;
El Badaoui, M. ;
Guillet, F. ;
Tandon, N. .
JOURNAL OF SOUND AND VIBRATION, 2006, 294 (03) :547-561
[9]   Non-linear dynamic response of a spur gear pair: Modelling and experimental comparisons [J].
Parker, RG ;
Vijayakar, SM ;
Imajo, T .
JOURNAL OF SOUND AND VIBRATION, 2000, 237 (03) :435-455
[10]  
SHENGXIANG J, 2006, MECH SYSTEMS SIGNAL, V20, P332