Combinatorial particle swarm optimization (CPSO) for partitional clustering problem

被引:90
作者
Jarboui, B. [1 ]
Cheikh, M. [1 ]
Siarry, P. [3 ]
Rebai, A. [2 ]
机构
[1] FSEGS, Sfax 3018, Tunisia
[2] ISAAS, Sfax 3018, Tunisia
[3] Univ Paris 12, LiSSi, F-94010 Creteil, France
关键词
particle swarm optimization; combinatorial particle swarm optimization; genetic algorithms; partitional clustering;
D O I
10.1016/j.amc.2007.03.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a new clustering approach based on the combinatorial particle swarm optimization (CPSO) algorithm. Each particle is represented as a string of length n (where n is the number of data points) the ith element of the string denotes the group number assigned to object i. An integer vector corresponds to a candidate solution to the clustering problem. A swarm of particles are initiated and fly through the solution space for targeting the optimal solution. To verify the efficiency of the proposed CPSO algorithm, comparisons with a genetic algorithm are performed. Computational results show that the proposed CPSO algorithm is very competitive and outperforms the genetic algorithm. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:337 / 345
页数:9
相关论文
共 8 条
[1]   SIMULTANEOUS ALGEBRAIC RECONSTRUCTION TECHNIQUE (SART) - A SUPERIOR IMPLEMENTATION OF THE ART ALGORITHM [J].
ANDERSEN, AH ;
KAK, AC .
ULTRASONIC IMAGING, 1984, 6 (01) :81-94
[2]  
[Anonymous], 2003, P INT PAR DISTR PROC
[3]   CLUSTERING WITH EVOLUTION STRATEGIES [J].
BABU, GP ;
MURTY, MN .
PATTERN RECOGNITION, 1994, 27 (02) :321-329
[4]  
Blackwell Tim., 2007, Particle swarm optimization, encyclopedia of machine learning, V1, P33, DOI DOI 10.4018/IJMFMP.2015010104
[5]  
Calinski T., 1974, COMMUN STAT, V3, P1, DOI DOI 10.1080/03610927408827101
[6]   BRANCH AND BOUND CLUSTERING ALGORITHM [J].
KOONTZ, WLG ;
NARENDRA, PM ;
FUKUNAGA, K .
IEEE TRANSACTIONS ON COMPUTERS, 1975, 24 (09) :908-915
[7]   Differential evolution and particle swarm optimisation in partitional clustering [J].
Paterlini, S ;
Krink, T .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (05) :1220-1247
[8]   A SIMULATED ANNEALING ALGORITHM FOR THE CLUSTERING PROBLEM [J].
SELIM, SZ ;
ALSULTAN, K .
PATTERN RECOGNITION, 1991, 24 (10) :1003-1008