Molecular pathogenesis of MLL-associated leukemias

被引:37
作者
Eguchi, M [1 ]
Eguchi-Ishimae, M [1 ]
Greaves, M [1 ]
机构
[1] Chester Beatty Labs, Inst Canc Res, Sect Haematooncol, London SW3 6JB, England
关键词
MLL gene; histone methylation/acetylation; hematopoietic stem cells; mouse models; short latency;
D O I
10.1532/IJH97.05042
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Chromosome translocations disrupting the MLL gene are associated with various hematologic malignancies but are particularly common in infant and secondary therapy-related acute leukemias. The normal MLL-encoded protein is an essential component of a supercomplex with chromatin-modulating activity conferred by histone acetylase and methyltransferase activities, and the protein plays a key role in the developmental regulation of gene expression, including Hox gene expression. In leukemia, this function is subverted by breakage, recombination, and the formation of chimeric fusion with one of many alternative partners. Such MLL translocations result in the replacement of the C-terminal functional domains of MLL with those of a fusion partner, yielding a newly formed MLL chimeric protein with an altered function that endows hematopoietic progenitors with self-renewing and leukemogenic activity. This potent impact of the MLL chimera can be attributed to one of 2 kinds of activity of the fusion partner: direct transcriptional transactivation or dimerization/oligomerization. Key unresolved issues currently being addressed include the set of target genes for MLL fusions, the stem cell of origin for the leukemias, the role of additional secondary mutations, and the origins or etiology of the MLL gene fusions themselves. Further elaboration of the biology of MLL gene-associated leukemia should lead to novel and specific therapeutic strategies.
引用
收藏
页码:9 / 20
页数:12
相关论文
共 165 条
[1]   CYTOGENETIC FINDINGS IN CONGENITAL LEUKEMIA - CASE-REPORT AND REVIEW OF THE LITERATURE [J].
ABE, R ;
RYAN, D ;
CECALUPO, A ;
COHEN, H ;
SANDBERG, AA .
CANCER GENETICS AND CYTOGENETICS, 1983, 9 (02) :139-144
[2]  
Adler HT, 1999, MOL CELL BIOL, V19, P7050
[3]  
Alexander FE, 2001, CANCER RES, V61, P2542
[4]   Perturbation of B and T cell development and predisposition to lymphomagenesis in E mu Bmi1 transgenic mice require the Bmi1 RING finger [J].
Alkema, MJ ;
Jacobs, H ;
vanLohuizen, M ;
Berns, A .
ONCOGENE, 1997, 15 (08) :899-910
[5]   Site-specific DNA cleavage within the MLL breakpoint cluster region induced by topoisomerase II inhibitors [J].
Aplan, PD ;
Chervinsky, DS ;
Stanulla, M ;
Burhans, WC .
BLOOD, 1996, 87 (07) :2649-2658
[6]   AT-hook motifs identified in a wide variety of DNA binding proteins [J].
Aravind, L ;
Landsman, D .
NUCLEIC ACIDS RESEARCH, 1998, 26 (19) :4413-4421
[7]   Inhibition of FLT3 in MLL: Validation of a therapeutic target identified by gene expression based classification [J].
Armstrong, SA ;
Kung, AL ;
Mabon, ME ;
Silverman, LB ;
Stam, RW ;
Den Boer, ML ;
Pieters, R ;
Kersey, JH ;
Sallan, SE ;
Fletcher, JA ;
Golub, TR ;
Griffin, JD ;
Korsmeyer, SJ .
CANCER CELL, 2003, 3 (02) :173-183
[8]   MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia [J].
Armstrong, SA ;
Staunton, JE ;
Silverman, LB ;
Pieters, R ;
de Boer, ML ;
Minden, MD ;
Sallan, SE ;
Lander, ES ;
Golub, TR ;
Korsmeyer, SJ .
NATURE GENETICS, 2002, 30 (01) :41-47
[9]   NQ01 stabilizes p53 through a distinct pathway [J].
Asher, G ;
Lotem, J ;
Kama, R ;
Sachs, L ;
Shaul, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (05) :3099-3104
[10]   Binding to nonmethylated CpG DNA is essential for target recognition, transactivation, and myeloid transformation by an MLL oncoprotein [J].
Ayton, PM ;
Chen, EH ;
Cleary, ML .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (23) :10470-10478