Glucose and palmitic acid induce degeneration of myofibrils and modulate apoptosis in rat adult cardiomyocytes

被引:156
作者
Dyntar, D
Eppenberger-Eberhardt, M
Maedler, K
Pruschy, M
Eppenberger, HM
Spinas, GA
Donath, MY [1 ]
机构
[1] Univ Zurich Hosp, Dept Med, Div Endocrinol & Diabet, CH-8091 Zurich, Switzerland
[2] Univ Zurich Hosp, Dept Radiat Oncol, CH-8091 Zurich, Switzerland
[3] ETH Zurich, Inst Cell Biol, CH-8093 Zurich, Switzerland
关键词
D O I
10.2337/diabetes.50.9.2105
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Several studies support the concept of a diabetic cardiomyopathy in the absence of discernible coronary artery disease, although its mechanism remains poorly understood. We investigated the role of glucose and palmitic acid on cardiomyocyte apoptosis and on the organization of the contractile apparatus. Exposure of adult rat cardiomyocytes for 18 h to palmitic acid (0.25 and 0.5 mmol/l) resulted in a significant increase of apoptotic cells, whereas increasing glucose concentration to 33.3 mmol/l for up to 8 days had no influence on the apoptosis rate. However, both palmitic acid and elevated glucose concentration alone or in combination had a dramatic destructive effect on the myofibrillar apparatus. The membrane-permeable C-2-ceramide but not the metabolically inactive C-2-dihydroceramide enhanced apoptosis of cardiomyocytes by 50%, accompanied by detrimental effects on the myofibrils. The palmitic acid-induced effects were impaired by fumonisin B1, an inhibitor of ceramide synthase. Sphingomyelinase, which activates the catabolic pathway of ceramide by metabolizing sphingomyeline to ceramide, did not adversely affect cardiomyocytes. Palmitic acid-induced apoptosis was accompanied by release of cytochrome c from the mitochondria. Aminoguanidine did not prevent glucose-induced myofibrillar degeneration, suggesting that formation of nitric oxide and/or advanced glycation end products play no major role. Taken together, these results suggest that in adult rat cardiac cells, palmitic acid induces apoptosis via de novo ceramide formation and activation of the apoptotic mitochondrial pathway. Conversely, glucose has no influence on adult cardiomyocyte apoptosis. However, both cell nutrients promote degeneration of myofibrils. Thus, gluco- and lipotoxicity may play a central role in the development of diabetic cardiomyopathy.
引用
收藏
页码:2105 / 2113
页数:9
相关论文
共 37 条
[1]   THE CELLULAR BASIS OF DILATED CARDIOMYOPATHY IN HUMANS [J].
BELTRAMI, CA ;
FINATO, N ;
ROCCO, M ;
FERUGLIO, GA ;
PURICELLI, C ;
CIGOLA, E ;
SONNENBLICK, EH ;
OLIVETTI, G ;
ANVERSA, P .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 1995, 27 (01) :291-305
[2]   The mitochondrial apoptotic pathway is activated by serum and glucose deprivation in cardiac myocytes [J].
Bialik, S ;
Cryns, VL ;
Drincic, A ;
Miyata, S ;
Wollowick, AL ;
Srinivasan, A ;
Kitsis, RN .
CIRCULATION RESEARCH, 1999, 85 (05) :403-414
[3]   AMINOGUANIDINE PREVENTS DIABETES-INDUCED ARTERIAL-WALL PROTEIN CROSS-LINKING [J].
BROWNLEE, M ;
VLASSARA, H ;
KOONEY, A ;
ULRICH, P ;
CERAMI, A .
SCIENCE, 1986, 232 (4758) :1629-1632
[4]   AMINOGUANIDINE, A NOVEL INHIBITOR OF NITRIC-OXIDE FORMATION, PREVENTS DIABETIC VASCULAR DYSFUNCTION [J].
CORBETT, JA ;
TILTON, RG ;
CHANG, K ;
HASAN, KS ;
IDO, Y ;
WANG, JL ;
SWEETLAND, MA ;
LANCASTER, JR ;
WILLIAMSON, JR ;
MCDANIEL, ML .
DIABETES, 1992, 41 (04) :552-556
[5]  
deVries JE, 1997, J LIPID RES, V38, P1384
[6]   Hyperglycemia-induced β-cell apoptosis in pancreatic islets of Psammomys obesus during development of diabetes [J].
Donath, MY ;
Gross, DJ ;
Cerasi, E ;
Kaiser, N .
DIABETES, 1999, 48 (04) :738-744
[7]   INSULIN-LIKE GROWTH-FACTOR-I STIMULATES MYOFIBRIL DEVELOPMENT AND DECREASES SMOOTH-MUSCLE ALPHA-ACTIN OF ADULT CARDIOMYOCYTES [J].
DONATH, MY ;
ZAPF, J ;
EPPENBERGEREBERHARDT, M ;
FROESCH, ER ;
EPPENBERGER, HM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (05) :1686-1690
[8]   Glucose and tolbutamide induce apoptosis in pancreatic β-cells -: A process dependent on intracellular Ca2+ concentration [J].
Efanova, IB ;
Zaitsev, SV ;
Zhivotovsky, B ;
Köhler, M ;
Efendic, S ;
Orrenius, S ;
Berggren, PO .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (50) :33501-33507
[9]   REEXPRESSION OF ALPHA-SMOOTH MUSCLE ACTIN ISOFORM IN CULTURED ADULT-RAT CARDIOMYOCYTES [J].
EPPENBERGEREBERHARDT, M ;
FLAMME, I ;
KURER, V ;
EPPENBERGER, HM .
DEVELOPMENTAL BIOLOGY, 1990, 139 (02) :269-278
[10]   IDENTIFICATION OF PROGRAMMED CELL-DEATH INSITU VIA SPECIFIC LABELING OF NUCLEAR-DNA FRAGMENTATION [J].
GAVRIELI, Y ;
SHERMAN, Y ;
BENSASSON, SA .
JOURNAL OF CELL BIOLOGY, 1992, 119 (03) :493-501