Neural regulator design

被引:6
作者
Ahmed, MS [1 ]
Al-Dajani, MA
机构
[1] King Fahd Univ Petr & Minerals, Dept Syst Engn, Dhahran 31261, Saudi Arabia
[2] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90024 USA
关键词
neural network; control system; regulation; nonlinear systems; optimization; gradient scheme;
D O I
10.1016/S0893-6080(98)00097-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Design of a neural-net-based regulator for nonlinear plants is considered. Both state and output feedback regulators with deterministic and stochastic disturbances have been investigated. A Multilayered Feedforward Neural Network (MFNN) has been employed as the nonlinear controller. The training of the MFNN utilizes the recently developed concept of Block Partial Derivatives (BPDs). (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1695 / 1709
页数:15
相关论文
共 16 条
[1]   BPD COMPUTATION AND MODEL-REFERENCE ADAPTIVE-CONTROL (MRAC) OF HAMMERSTEIN PLANTS [J].
AHMED, MS .
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1995, 142 (05) :475-485
[2]   NEURAL-NET CONTROLLER FOR NONLINEAR PLANTS - DESIGN APPROACH THROUGH LINEARIZATION [J].
AHMED, MS ;
TASADDUQ, IA .
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1994, 141 (05) :315-322
[3]   Neural-net-based direct self-tuning control of nonlinear plants [J].
Ahmed, MS ;
Anjum, MF .
INTERNATIONAL JOURNAL OF CONTROL, 1997, 66 (01) :85-104
[4]  
[Anonymous], 1992, MODERN CONTROL SYSTE
[5]  
Astrom K.J., 1990, COMPUTER CONTROLLED
[6]  
Bryson A. E., 1969, Applied Optimal Control: Optimization, Estimation, and Control
[7]  
Cybenko G., 1989, Mathematics of Control, Signals, and Systems, V2, P303, DOI 10.1007/BF02551274
[8]  
Haykin S., 1994, NEURAL NETWORKS COMP
[9]   MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS [J].
HORNIK, K ;
STINCHCOMBE, M ;
WHITE, H .
NEURAL NETWORKS, 1989, 2 (05) :359-366
[10]  
Kirk D., 1970, Optimal Control Theory An Introduction