Lithium-ion batteries. A look into the future

被引:2341
作者
Scrosati, Bruno [1 ,2 ]
Hassoun, Jusef [1 ,2 ]
Sun, Yang-Kook [2 ]
机构
[1] Univ Roma La Sapienza, Dept Chem, I-00185 Rome, Italy
[2] Hanyang Univ, Dept WCU Energy Engn & Chem Engn, Seoul 133791, South Korea
关键词
POLYMER ELECTROLYTES; ELECTROCHEMISTRY; LIQUIDS; CHALLENGES; ELECTRODES; CATALYSTS; ANODE; CELL;
D O I
10.1039/c1ee01388b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A critical overview of the latest developments in the lithium ion batteries technology is reported. We first describe the evolution in the electrolyte area with particular attention to ionic liquids, discussing the expected application of these room temperature molten salts and listing the issues that still prevent their practical implementation. The attention is then focused on the electrode materials presently considered the most promising for enhancing the energy density of the batteries. At the anode side a discussion is provided on the status of development of high capacity tin and silicon lithium alloys. We show that the morphology that is the most likely to ensure commercial exploitation of these alloy electrodes is that involving carbon-based nanocomposites. We finally touch on super-high-capacity batteries, discussing the key cases of lithium-sulfur and lithium-air and attempting to forecast their chances to eventually reach the status of practically appealing energy storage systems. We conclude with a brief reflection on the amount of lithium reserves in view of its large use in the case of global conversion from gasoline-powered cars to hybrid and electric cars.
引用
收藏
页码:3287 / 3295
页数:9
相关论文
共 48 条
  • [1] A polymer electrolyte-based rechargeable lithium/oxygen battery
    Abraham, KM
    Jiang, Z
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (01) : 1 - 5
  • [2] Ahn H. J., 2009, ENCY POWER SOURCES, P155
  • [3] Synthesis of hydrophobic ionic liquids for electrochemical applications
    Appetecchi, Giovanni B.
    Scaccia, Silvera
    Tizzani, Cosimo
    Alessandrini, Fabrizio
    Passerini, S.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (09) : A1685 - A1691
  • [4] Nanostructured materials for advanced energy conversion and storage devices
    Aricò, AS
    Bruce, P
    Scrosati, B
    Tarascon, JM
    Van Schalkwijk, W
    [J]. NATURE MATERIALS, 2005, 4 (05) : 366 - 377
  • [5] Armand M, 2009, NAT MATER, V8, P621, DOI [10.1038/NMAT2448, 10.1038/nmat2448]
  • [6] THE ELECTROCHEMISTRY OF NOBLE-METAL ELECTRODES IN APROTIC ORGANIC-SOLVENTS CONTAINING LITHIUM-SALTS
    AURBACH, D
    DAROUX, M
    FAGUY, P
    YEAGER, E
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1991, 297 (01): : 225 - 244
  • [7] On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries
    Aurbach, Doron
    Pollak, Elad
    Elazari, Ran
    Salitra, Gregory
    Kelley, C. Scordilis
    Affinito, John
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (08) : A694 - A702
  • [8] Si electrodes for li-ion batteries - A new way to look at an old problem
    Beattie, S. D.
    Larcher, D.
    Morcrette, M.
    Simon, B.
    Tarascon, J. -M.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (02) : A158 - A163
  • [9] Will advanced lithium-alloy anodes have a chance in lithium-ion batteries?
    Besenhard, JO
    Yang, J
    Winter, M
    [J]. JOURNAL OF POWER SOURCES, 1997, 68 (01) : 87 - 90
  • [10] Nanomaterials for rechargeable lithium batteries
    Bruce, Peter G.
    Scrosati, Bruno
    Tarascon, Jean-Marie
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) : 2930 - 2946