Convective Assembly of 2D Lattices of Virus-like Particles Visualized by In-Situ Grazing-Incidence Small-Angle X-Ray Scattering

被引:11
作者
Ashley, Carlee E. [2 ]
Dunphy, Darren R. [2 ]
Jiang, Zhang [3 ]
Carnes, Eric C. [2 ]
Yuan, Zhen [2 ]
Petsev, Dimiter N. [2 ]
Atanassov, Plamen B. [2 ]
Velev, Orlin D. [4 ]
Sprung, Michael [3 ]
Wang, Jin [3 ]
Peabody, David S. [5 ]
Brinker, C. Jeffrey [1 ]
机构
[1] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA
[2] Univ New Mexico, NSF Ctr Microengn Mat, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA
[3] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
[4] N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA
[5] Univ New Mexico, Albuquerque, NM 87131 USA
基金
美国能源部; 美国国家卫生研究院;
关键词
TOBACCO-MOSAIC-VIRUS; NANOCRYSTAL SUPERLATTICES; CONTROLLED THICKNESS; RAPID DEPOSITION; COATINGS; NANOPARTICLES; PHAGE; FILMS;
D O I
10.1002/smll.201001665
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The rapid assembly of icosohedral virus-like particles (VLPs) into highly ordered (domain size > 600 nm), oriented 2D superlattices directly onto a solid substrate using convective coating is demonstrated. In-situ grazing-incidence small-angle X-ray scattering (GISAXS) is used to follow the self-assembly process in real time to characterize the mechanism of superlattice formation, with the ultimate goal of tailoring film deposition conditions to optimize long-range order. From water, GISAXS data are consistent with a transport-limited assembly process where convective flow directs assembly of VLPs into a lattice oriented with respect to the water drying line. Addition of a nonvolatile solvent (glycerol) modified this assembly pathway, resulting in non-oriented superlattices with improved long-range order. Modification of electrostatic conditions (solution ionic strength, substrate charge) also alters assembly behavior; however, a comparison of in-situ assembly data between VLPs derived from the bacteriophages MS2 and Q beta show that this assembly process is not fully described by a simple Derjaguin-Landau-Verwey-Overbeek model alone.
引用
收藏
页码:1043 / 1050
页数:8
相关论文
共 38 条
[1]   Self-assembly approaches to nanomaterial encapsulation in viral protein cages [J].
Aniagyei, Stella E. ;
DuFort, Christopher ;
Kao, C. Cheng ;
Dragnea, Bogdan .
JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (32) :3763-3774
[2]  
[Anonymous], 1987, Surface Forces
[3]   Kinetically driven self assembly of highly ordered nanoparticle monolayers [J].
Bigioni, TP ;
Lin, XM ;
Nguyen, TT ;
Corwin, EI ;
Witten, TA ;
Jaeger, HM .
NATURE MATERIALS, 2006, 5 (04) :265-270
[4]   VIPERdb2: an enhanced and web API enabled relational database for structural virology [J].
Carrillo-Tripp, Mauricio ;
Shepherd, Craig M. ;
Borelli, Ian A. ;
Venkataraman, Sangita ;
Lander, Gabriel ;
Natarajan, Padmaja ;
Johnson, John E. ;
Brooks, Charles L., III ;
Reddy, Vijay S. .
NUCLEIC ACIDS RESEARCH, 2009, 37 :D436-D442
[5]   MECHANISM OF FORMATION OF 2-DIMENSIONAL CRYSTALS FROM LATEX-PARTICLES ON SUBSTRATES [J].
DENKOV, ND ;
VELEV, OD ;
KRALCHEVSKY, PA ;
IVANOV, IB ;
YOSHIMURA, H ;
NAGAYAMA, K .
LANGMUIR, 1992, 8 (12) :3183-3190
[6]  
Derjaguin B.V., 1989, Theory of Stability of Colloids and Thin Films
[7]   Dynamic investigation of gold nanocrystal assembly using in situ grazing-incidence small-angle X-ray scattering [J].
Dunphy, Darren ;
Fan, Hongyou ;
Li, Xuefa ;
Wang, Jin ;
Brinker, C. Jeffrey .
LANGMUIR, 2008, 24 (19) :10575-10578
[8]   Viruses as building blocks for materials and devices [J].
Fischlechner, Martin ;
Donath, Edwin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (18) :3184-3193
[9]   Self-Assembly of Tobacco Mosaic Virus at Oil/Water Interfaces [J].
He, Jinbo ;
Niu, Zhongwei ;
Tangirala, Ravisubhash ;
Wan, Jia-Yu ;
Wei, Xinyu ;
Kaur, Gagandeep ;
Wang, Qian ;
Jutz, Guenther ;
Boeker, Alexander ;
Lee, Byeongdu ;
Pingali, Sai Venkatesh ;
Thiyagarajan, Pappannan ;
Emrick, Todd ;
Russell, Thomas P. .
LANGMUIR, 2009, 25 (09) :4979-4987
[10]   Interior surface modification of bacteriophage MS2 [J].
Hooker, JM ;
Kovacs, EW ;
Francis, MB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (12) :3718-3719