A note on Q-order of convergence

被引:105
作者
Jay, LO [1 ]
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
关键词
convergence; metric space; Q-order; sequences;
D O I
10.1023/A:1021902825707
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
To complement the property of Q-order of convergence we introduce the notions of Q-superorder and Q-suborder of convergence. ii new definition of exact Q-order of convergence given in this note generalizes one given by Potra. The definitions of exact Q-superorder and exact Q-suborder of convergence are also introduced. These concepts allow the characterization of any sequence converging with Q-order (at least) by showing the existence of a unique real number q is an element of [1, +infinity] such that either exact Q-order, exact Q-superorder, or exact Q-suborder q of convergence holds.
引用
收藏
页码:422 / 429
页数:8
相关论文
共 10 条
[1]  
[Anonymous], 1984, NONDISCRETE INDUCTIO
[2]  
DENNIS JE, 1993, SIAM CLASSICS APPL M
[3]  
Fletcher R., 1987, PRACTICAL METHODS OP, DOI [DOI 10.1002/9781118723203, 10.1002/9781118723203]
[4]  
Gill M., 1981, Practical Optimization
[5]  
Kelley C.T., 1995, ITERATIVE METHODS LI, DOI DOI 10.1137/1.9781611970944
[6]  
Luenberger D.G., 1984, LINEAR NONLINEAR PRO
[7]  
Nocedal J., 1999, Numerical Optimization, Vfirst, DOI DOI 10.1007/0-387-22742-3_18
[8]  
Ortega JM., 1970, ITERATIVE SOLUTION N
[9]   ON Q-ORDER AND R-ORDER OF CONVERGENCE [J].
POTRA, FA .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1989, 63 (03) :415-431
[10]  
RHEINBOLDT W, 1998, SIAM CLASSICS APPL M