Seasonal variation in the energy and water exchanges above and below a larch forest in eastern Siberia

被引:154
作者
Ohta, T
Hiyama, T
Tanaka, H
Kuwada, T
Maximov, TC
Ohata, T
Fukushima, Y
机构
[1] Iwate Univ, Fac Agr, Morioka, Iwate 0208550, Japan
[2] Nagoya Univ, Inst Hydrospher Atmospher Sci, Chikusa Ku, Nagoya, Aichi 4648601, Japan
[3] Kyoto Univ, Grad Sch Agr, Kyoto 6068502, Japan
[4] Okayama Univ, Fac Agr, Okayama 7008530, Japan
[5] Inst Biol Problems Cryolithozone, Yakutsk 677891, Russia
[6] Hokkaido Univ, Inst Low Temp Sci, Sapporo, Hokkaido 0600819, Japan
[7] Frontier Observat Res Syst Global Change, Tokyo 1050013, Japan
关键词
Siberian larch forest; energy and water balance; canopy resistance; land surface condition; GAME-Siberia;
D O I
10.1002/hyp.219
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
The water and energy exchanges in forests form one of the most important hydro-meteorological systems. There have been far fewer investigations of the water and heat exchange in high latitude forests than of those in warm. humid regions. There have been few observations of this system in Siberia for an entire growing season, including the snowmelt and leaf-fall seasons. In this study, the characteristics of the energy and water budgets in an eastern Siberian larch forest were investigated from the snowmelt season to the leaf-fall season. The latent heat flux was strongly affected by the transpiration activity of the larch trees and increased quickly as the larch stand began to foliate. The sensible heat dropped at that time, although the net all wave radiation increased. Consequently, the seasonal variation in the Bowen ratio was clearly 'U'-shaped. and the minimum value (1.0) occurred in June and July. The Bowen ratio was very high (10-25) in early spring, just before leaf opening. The canopy resistance for a big leaf model far exceeded the aerodynamic resistance and fluctuated over a much wider range. The canopy resistance was strongly restricted by the saturation deficit, and its minimum value was 100 s m(-1) (10 mm s(-1) in conductance). This minimum canopy resistance is higher than values obtained for forests in warm, humid regions, but is similar to those measured in other boreal conifer forests. It has been suggested that the senescence of Leaves also affects the canopy resistance, which was higher in the leaf-fall season than in the foliated season. The mean evapotranspiration rate from 21 April 1998 to 7 September 1998 was 1.16 mm day(-1). and the maximum rate, 2.9 mm day(-1), occurred at the beginning of July. For the growing season from 1 June to 31 August, this rate was 1.5 mm day(-1). The total evapotranspiration from the forest (151 mm) exceeded the amount of precipitation (106 mm) and was equal to 73% of the total water input (211 mm), including the snow water equivalent. The understory evapotranspiration reached 35% of the total evapotranspiration, and the interception evaporation was 15% of the gross precipitation. The understory evapotranspiration was high and the interception evaporation was low because the canopy was sparse and the leaf area index was low. Copyright (C) 2001 John Wiley & Sons, Ltd.
引用
收藏
页码:1459 / 1476
页数:18
相关论文
共 47 条
[1]   EVAPOTRANSPIRATION FROM A BOREAL FOREST DRAINAGE-BASIN USING AN ENERGY-BALANCE EDDY-CORRELATION TECHNIQUE [J].
AMIRO, BD ;
WUSCHKE, EE .
BOUNDARY-LAYER METEOROLOGY, 1987, 38 (1-2) :125-139
[2]   Seasonal variation of energy and water vapor exchange rates above and below a boreal jack pine forest canopy [J].
Baldocchi, DD ;
Vogel, CA ;
Hall, B .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1997, 102 (D24) :28939-28951
[3]   BOREAL FOREST AND TUNDRA ECOSYSTEMS AS COMPONENTS OF THE CLIMATE SYSTEM [J].
BONAN, GB ;
CHAPIN, FS ;
THOMPSON, SL .
CLIMATIC CHANGE, 1995, 29 (02) :145-167
[4]   EFFECTS OF BOREAL FOREST VEGETATION ON GLOBAL CLIMATE [J].
BONAN, GB ;
POLLARD, D ;
THOMPSON, SL .
NATURE, 1992, 359 (6397) :716-718
[5]   THE ALBEDO OF TEMPERATE AND BOREAL FOREST AND THE NORTHERN-HEMISPHERE CLIMATE - A SENSITIVITY EXPERIMENT USING THE LMD-GCM [J].
CHALITA, S ;
LETREUT, H .
CLIMATE DYNAMICS, 1994, 10 (4-5) :231-240
[6]   Canopy transpiration from a boreal forest in Sweden during a dry year [J].
Cienciala, E ;
Kucera, J ;
Lindroth, A ;
Cermak, J ;
Grelle, A ;
Halldin, S .
AGRICULTURAL AND FOREST METEOROLOGY, 1997, 86 (3-4) :157-167
[7]   The energy budget of a spruce forest: Field measurements and comparison with the forest-land-atmosphere model (FLAME) [J].
Constantin, J ;
Inclan, MG ;
Raschendorfer, M .
JOURNAL OF HYDROLOGY, 1998, 212 (1-4) :22-35
[9]   GROWING-SEASON BOUNDARY-LAYER CLIMATE AND SURFACE EXCHANGES IN A SUB-ARCTIC LICHEN WOODLAND [J].
FITZJARRALD, DR ;
MOORE, KE .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1994, 99 (D1) :1899-1917
[10]   Evaporation components of a boreal forest: Variations during the growing season [J].
Grelle, A ;
Lundberg, A ;
Lindroth, A ;
Moren, AS ;
Cienciala, E .
JOURNAL OF HYDROLOGY, 1997, 197 (1-4) :70-87