A theoretical framework for convex regularizers in PDE-based computation of image motion

被引:205
作者
Weickert, J [1 ]
Schnörr, C [1 ]
机构
[1] Univ Mannheim, Dept Math & Comp Sci, Comp Vis Graph & Pattern Recognit Grp, D-68131 Mannheim, Germany
关键词
optic flow; differential methods; regularization; diffusion filtering; well-posedness;
D O I
10.1023/A:1013614317973
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many differential methods for the recovery of the optic flow field from an image sequence can be expressed in terms of a variational problem where the optic flow minimizes some energy. Typically, these energy functionals consist of two terms: a data term, which requires e.g. that a brightness constancy assumption holds, and a regularizer that encourages global or piecewise smoothness of the flow field. In this paper we present a systematic classification of rotation invariant convex regularizers by exploring their connection to diffusion filters for multichannel images. This taxonomy provides a unifying framework for data-driven and flow-driven, isotropic and anisotropic, as well as spatial and spatio-temporal regularizers. While some of these techniques are classic methods from the literature, others are derived here for the first time. We prove that all these methods are well-posed: they posses a unique solution that depends in a continuous way on the initial data. An interesting structural relation between isotropic and anisotropic flow-driven regularizers is identified, and a design criterion is proposed for constructing anisotropic flow-driven regularizers in a simple and direct way from isotropic ones. Its use is illustrated by several examples.
引用
收藏
页码:245 / 264
页数:20
相关论文
共 62 条
[1]   Reliable estimation of dense optical flow fields with large displacements [J].
Alvarez, L ;
Weickert, J ;
Sánchez, J .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2000, 39 (01) :41-56
[2]   A COMPUTATIONAL FRAMEWORK AND AN ALGORITHM FOR THE MEASUREMENT OF VISUAL-MOTION [J].
ANANDAN, P .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1989, 2 (03) :283-310
[3]  
[Anonymous], GEOMETRY DRIVEN DIFF
[4]  
[Anonymous], 1999, Proceedings XVI Congreso de Ecuaciones Diferenciales y Aplicaciones
[5]   Computing optical flow via variational techniques [J].
Aubert, G ;
Deriche, R ;
Kornprobst, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1999, 60 (01) :156-182
[6]   PERFORMANCE OF OPTICAL-FLOW TECHNIQUES [J].
BARRON, JL ;
FLEET, DJ ;
BEAUCHEMIN, SS .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1994, 12 (01) :43-77
[7]   ILL-POSED PROBLEMS IN EARLY VISION [J].
BERTERO, M ;
POGGIO, TA ;
TORRE, V .
PROCEEDINGS OF THE IEEE, 1988, 76 (08) :869-889
[8]   The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields [J].
Black, MJ ;
Anandan, P .
COMPUTER VISION AND IMAGE UNDERSTANDING, 1996, 63 (01) :75-104
[9]  
BLACK MJ, 1991, P 1991 IEEE COMP SOC, P292
[10]  
Blake A., 1987, Visual Reconstruction