Nucleocytoplasmic shuttling and phosphorylation of BMAL1 are regulated by circadian clock in cultured fibroblasts

被引:63
作者
Tamaru, T
Isojima, Y
van der Horst, GTJ
Takei, K
Nagai, K
Takamatsu, K
机构
[1] Toho Univ, Sch Med, Dept Physiol, Ohta Ku, Tokyo 1438540, Japan
[2] Osaka Univ, Inst Prot Res, Div Prot Metab, Osaka 5650871, Japan
[3] Erasmus MC, Dept Cell Biol & Genet, NL-3000 DR Rotterdam, Netherlands
[4] Yokohama City Univ, Sch Med, Dept Mol Pharmacol & Neurobiol, Kanazawa Ku, Yokohama, Kanagawa 2360004, Japan
关键词
D O I
10.1046/j.1365-2443.2003.00686.x
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Background: Recent discoveries of clock proteins have unveiled an important part of the mammalian circadian clock mechanism. However, the molecular clockwork that cause these fundamental feedback loops to stably oscillate with a similar to24 h-periodicity remain unclear. Results: Serum-shocked fibroblasts were used as a cellular clock model. Circadian changes in the subcellular localization and phosphorylation of BMAL1 protein in these cells were assessed by immunocytochemistry and immunoblotting. A significant time lag between Bmal1 transcription and the cytoplasmic/nuclear accumulation of BMAL1 was observed. After its nuclear accumulation, BMAL1 accumulated in the cytoplasm again, mainly by nucleoexport, before the increase of Bmal1 transcripts. Nuclear accumulation of BMAL1 matched nuclear accumulation of CLOCK and the peak of Per1 transcription. Nuclear BMAL1 was gradually phosphorylated and then dephosphorylated in a temporally regulated manner, although cytoplasmic BMAL1 was not. In serum-shocked mCry1/mCry2 (CRY)-deficient fibroblasts, which lack a functional clock, both the cytoplasmic and nuclear BMAL1 were only present as hyperphosphorylated forms and their circadian nucleocytoplasmic shuttling was absent. Conclusions: We propose that the nucleocytoplasmic shuttling and phosphorylation states of BMAL1 are regulated by circadian clock, and that this temporally regulated and time-delayed nuclear entry of BMAL1 is important in the maintenance of a stably oscillating clock.
引用
收藏
页码:973 / 983
页数:11
相关论文
共 31 条
[1]   Circadian rhythm and light responsiveness of BMAL1 expression, a partner of mammalian clock gene Clock, in the suprachiasmatic nucleus of rats [J].
Abe, H ;
Honma, S ;
Namihira, M ;
Tanahashi, Y ;
Ikeda, M ;
Honma, K .
NEUROSCIENCE LETTERS, 1998, 258 (02) :93-96
[2]  
Akashi M, 2000, GENE DEV, V14, P645
[3]   A serum shock induces circadian gene expression in mammalian tissue culture cells [J].
Balsalobre, A ;
Damiola, F ;
Schibler, U .
CELL, 1998, 93 (06) :929-937
[4]   Mop3 is an essential component of the master circadian pacemaker in mammals [J].
Bunger, MK ;
Wilsbacher, LD ;
Moran, SM ;
Clendenin, C ;
Radcliffe, LA ;
Hogenesch, JB ;
Simon, MC ;
Takahashi, JS ;
Bradfield, CA .
CELL, 2000, 103 (07) :1009-1017
[5]   Neurospora wc-1 and wc-2: Transcription, photoresponses, and the origins of circadian rhythmicity [J].
Crosthwaite, SK ;
Dunlap, JC ;
Loros, JJ .
SCIENCE, 1997, 276 (5313) :763-769
[6]   Closing the circadian loop:: CLOCK-induced transcription of its own inhibitors per and tim [J].
Darlington, TK ;
Wager-Smith, K ;
Ceriani, MF ;
Staknis, D ;
Gekakis, N ;
Steeves, TDL ;
Weitz, CJ ;
Takahashi, JS ;
Kay, SA .
SCIENCE, 1998, 280 (5369) :1599-1603
[7]   TEMPORAL PHOSPHORYLATION OF THE DROSOPHILA PERIOD PROTEIN [J].
EDERY, I ;
ZWIEBEL, LJ ;
DEMBINSKA, ME ;
ROSBASH, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (06) :2260-2264
[8]   The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase Iε [J].
Eide, EJ ;
Vielhaber, EL ;
Hinz, WA ;
Virshup, DM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (19) :17248-17254
[9]   Phosphorylation of CREB Ser142 regulates light-induced phase shifts of the circadian clock [J].
Gau, D ;
Lemberger, T ;
von Gall, C ;
Kretz, O ;
Minh, NL ;
Gass, P ;
Schmid, W ;
Schibler, U ;
Korf, HW ;
Schütz, G .
NEURON, 2002, 34 (02) :245-252
[10]   Role of the CLOCK protein in the mammalian circadian mechanism [J].
Gekakis, N ;
Staknis, D ;
Nguyen, HB ;
Davis, FC ;
Wilsbacher, LD ;
King, DP ;
Takahashi, JS ;
Weitz, CJ .
SCIENCE, 1998, 280 (5369) :1564-1569