An ordinal information retrieval model

被引:20
作者
Bordogna, G [1 ]
Pasi, G [1 ]
机构
[1] CNR, ITIM, I-20131 Milan, Italy
关键词
Information Retrieval models; linguistic variables; relevance; linguistic quantifiers;
D O I
10.1142/S0218488501000995
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper an ordinal Information Retrieval model is proposed, which is formalised within fuzzy set theory and is based on the notion of linguistic granules of information. Linguistic expressions are defined to represent and manage the importance of both the index terms as descriptors of the information items and the query terms (content selectors) as descriptors of users' needs. The advantage of this approach with respect to the (numeric) fuzzy IR models is that the query evaluation mechanism and the definition of the importance semantics are simplified.
引用
收藏
页码:63 / 75
页数:13
相关论文
共 16 条
  • [1] BORDOGNA G, 1993, J AM SOC INFORM SCI, V44, P70, DOI 10.1002/(SICI)1097-4571(199303)44:2<70::AID-ASI2>3.0.CO
  • [2] 2-I
  • [3] LINGUISTIC AGGREGATION OPERATORS OF SELECTION CRITERIA IN FUZZY INFORMATION-RETRIEVAL
    BORDOGNA, G
    PASI, G
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 1995, 10 (02) : 233 - 248
  • [4] BOSC P, 1995, PROCEEDINGS OF 1995 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS I-IV, P729, DOI 10.1109/FUZZY.1995.409764
  • [5] Is this document relevant? ... probably: A survey of probabilistic models in information retrieval
    Crestani, F
    Lalmas, M
    Van Rijsbergen, CJ
    Campbell, I
    [J]. ACM COMPUTING SURVEYS, 1998, 30 (04) : 528 - 552
  • [6] FRAKFT DH, 1995, INFORMATION SCI APPL, V2, P119
  • [7] KRAFT DH, 1999, HDB FUZZY SETS SERIE, V3, P469
  • [8] MILLER GA, 1969, PATOLOGY MEMORY
  • [9] TERM-WEIGHTING APPROACHES IN AUTOMATIC TEXT RETRIEVAL
    SALTON, G
    BUCKLEY, C
    [J]. INFORMATION PROCESSING & MANAGEMENT, 1988, 24 (05) : 513 - 523
  • [10] SALTON G, 1984, INTRO MOEDERN INFORM