The objective was to prepare mononuclear, binuclear, and insoluble polynuclear oxovanadium(IV)-Schiff base complexes and to use them for sulfoxidation and epoxidation of organic substrates. [VO(salen)] (complex 1) with tetradentate salen(salicylideneethylenediamine) being coordinated in the equatorial plane of oxovanadium(IV), [VO(salap)] (complex 2), and [(VO)(2)(sal(2)-dhdabp)] (complex 3) with tridentate salap(salicylideneorthoaminophenol) and sal(2)-dhdabp(salicylidene-3,3'-dihydroxy-4,4'-diaminobiphenyl) being bound, respectively, in the equatorial plane, of which polynuclear complexes were constituted as monomer units, were prepared and spectroscopically characterized. A sulfide and olefins were oxidized by use of complexes 1 and 2 (mononuclear), complex 3 (binuclear), and the polynuclear complexes (poly-1 and poly-3) synthesized with 1 and 3, respectively. The reaction rates for poly-1 and -3 were a little lower than those of the corresponding 1 and 3. On oxidation of sulfides, poly-3 exhibited lowering of activity by about 15% in three cycles, while poly-1 showed significant lose of activity with each use. Poly-3 was efficient for the oxidation of the olefins only in the first cycle. It was suggested that the loss of activity depends not only on the coordination geometry of the oxovanadium complex, but also on the kind of the substrate. (C) 2003 Elsevier B.V. All rights reserved.