Vectorial Preisach-type model designed for parallel computing

被引:8
作者
Stancu, Alexandru
Stoleriu, Laurentiu
Andrei, Petru
机构
[1] Cuza Univ, Dept Solid State & Theoret Phys, Iasi 700506, Romania
[2] Florida State Univ, Tallahassee, FL 32306 USA
[3] Florida A&M Univ, Tallahassee, FL 32307 USA
关键词
magnetic hysteresis; Preisach modeling; micromagnetic modeling; vector modeling;
D O I
10.1016/j.jmmm.2007.02.130
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Most of the hysteresis phenomenological models are scalar, while all the magnetization processes are vectorial. The vector models phenomenological or micromagnetic (physical) - are time consuming and sometimes difficult to implement. In this paper, we introduce a new vector Preisach-type model that uses micromagnetic results to simulate the magnetic response of a system of several tens of thousands of pseudo-particles. The model has a modular structure that allows easy implementation for parallel computing. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:E309 / E312
页数:4
相关论文
共 19 条
[1]   Accurate modeling of vector hysteresis using a superposition of Preisach-type models [J].
Adly, AA ;
Mayergoyz, ID .
IEEE TRANSACTIONS ON MAGNETICS, 1997, 33 (05) :4155-4157
[2]   A NEW VECTOR PREISACH-TYPE MODEL OF HYSTERESIS [J].
ADLY, AA ;
MAYERGOYZ, ID .
JOURNAL OF APPLIED PHYSICS, 1993, 73 (10) :5824-5826
[3]   The generalized cobweb method [J].
Alejos, O ;
Della Torre, E .
IEEE TRANSACTIONS ON MAGNETICS, 2005, 41 (05) :1552-1555
[4]   VECTOR PREISACH MODELING [J].
CHARAP, SH ;
KTENA, A .
JOURNAL OF APPLIED PHYSICS, 1993, 73 (10) :5818-5823
[5]   Vector modeling - Part II: Ellipsoidal vector hysteresis model. Numerical application to a 2D case [J].
Della Torre, E ;
Pinzaglia, E ;
Cardelli, E .
PHYSICA B-CONDENSED MATTER, 2006, 372 (1-2) :115-119
[6]   Vector modeling - Part I: Generalized hysteresis model [J].
Della Torre, E ;
Pinzaglia, E ;
Cardelli, E .
PHYSICA B-CONDENSED MATTER, 2006, 372 (1-2) :111-114
[7]   PARAMETER-IDENTIFICATION OF THE COMPLETE-MOVING-HYSTERESIS MODEL USING MAJOR LOOP DATA [J].
DELLATORRE, E ;
VAJDA, F .
IEEE TRANSACTIONS ON MAGNETICS, 1994, 30 (06) :4987-5000
[8]   MAGNETIZATION REVERSAL BY ROTATION [J].
GILLETTE, PR ;
OSHIMA, K .
JOURNAL OF APPLIED PHYSICS, 1958, 29 (03) :529-531
[9]  
Mayergoyz I D., 1991, Mathematical Models of Hysteresis
[10]   MATHEMATICAL-MODELS OF HYSTERESIS [J].
MAYERGOYZ, ID .
IEEE TRANSACTIONS ON MAGNETICS, 1986, 22 (05) :603-608