Regulation of adenylyl cyclase isozymes on acute and chronic activation of inhibitory receptors

被引:59
作者
Nevo, I
Avidor-Reiss, T
Levy, R
Bayewitch, M
Heldman, E
Vogel, Z [1 ]
机构
[1] Weizmann Inst Sci, Dept Neurobiol, IL-76100 Rehovot, Israel
[2] Israel Inst Biol Res, IL-74100 Ness Ziona, Israel
关键词
D O I
10.1124/mol.54.2.419
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Adenylyl cyclase superactivation, a phenomenon by which chronic activation of inhibitory G(i/o)-coupled receptors leads to an increase in cAMP accumulation, is believed to play an important role as a compensatory response of the cAMP signaling system in the cell. However, to date, the mechanism by which adenylyl cyclase activity is regulated by chronic exposure to inhibitory agonists and the nature of the adenylyl cyclase isozymes participating in this process remain largely unknown. Here we show, using COS-7 cells transfected with the various AC isozymes, that acute activation of the D-2 dopaminergic and m4 muscarinic receptors inhibited the activity of adenylyl cyclase isozymes I, V, VI, and VIII, whereas types II, IV, and VII were stimulated and type III was not affected. Conversely, chronic receptor activation led to superactivation of adenylyl cyclase types I, V, VI, and VIII and to a reduction in the activities of types II, IV, and VII. The activity of AC-III also was reduced. This pattern of inhibition/stimulation of the various adenylyl cyclase isozymes is similar to that we recently observed on acute and chronic activation of the mu-opioid receptor, suggesting that isozyme-specific adenylyl cyclase superactivation may represent a general means of cellular adaptation to the activation of inhibitory receptors and that the presence/absence and intensity of the adenylyl cyclase response in different brain areas (or cell types) could be explained by the expression of different adenylyl cyclase isozyme types in these areas.
引用
收藏
页码:419 / 426
页数:8
相关论文
共 40 条
[1]  
AMMER H, 1993, MOL PHARMACOL, V43, P556
[2]   Chronic opioid treatment induces adenylyl cyclase V superactivation - Involvement of G beta gamma [J].
AvidorReiss, T ;
Nevo, I ;
Levy, R ;
Pfeuffer, T ;
Vogel, Z .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (35) :21309-21315
[3]   Opiate-induced adenylyl cyclase superactivation is isozyme-specific [J].
AvidorReiss, T ;
Nevo, I ;
Saya, D ;
Bayewitch, M ;
Vogel, Z .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (08) :5040-5047
[4]   KAPPA-OPIOID RECEPTOR-TRANSFECTED CELL-LINES - MODULATION OF ADENYLYL-CYCLASE ACTIVITY FOLLOWING ACUTE AND CHRONIC OPIOID TREATMENTS [J].
AVIDORREISS, T ;
ZIPPEL, R ;
LEVY, R ;
SAYA, D ;
EZRA, V ;
BARG, J ;
MATUSLEIBOVITCH, N ;
VOGEL, Z .
FEBS LETTERS, 1995, 361 (01) :70-74
[5]  
AVIDORREISS T, 1995, J BIOL CHEM, V270, P29732
[6]   Differential modulation of adenylyl cyclases I and II by various Gβ subunits [J].
Bayewitch, ML ;
Avidor-Reiss, T ;
Levy, R ;
Pfeuffer, T ;
Nevo, I ;
Simonds, WF ;
Vogel, Z .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (04) :2273-2276
[7]   RECEPTOR-EFFECTOR COUPLING BY G-PROTEINS [J].
BIRNBAUMER, L ;
ABRAMOWITZ, J ;
BROWN, AM .
BIOCHIMICA ET BIOPHYSICA ACTA, 1990, 1031 (02) :163-224
[8]   ADENYLYL CYCLASES AND THE INTERACTION BETWEEN CALCIUM AND CAMP SIGNALING [J].
COOPER, DMF ;
MONS, N ;
KARPEN, JW .
NATURE, 1995, 374 (6521) :421-424
[9]   PATHOGENESIS AND TREATMENT OF NEUROLEPTIC MALIGNANT SYNDROME [J].
EBADI, M ;
PFEIFFER, RF ;
MURRIN, LC .
GENERAL PHARMACOLOGY-THE VASCULAR SYSTEM, 1990, 21 (04) :367-386
[10]   Early combination of bromocriptine and levodopa in Parkinson's disease: A prospective randomized study of two parallel groups over a total follow-up period of 44 months including an initial 8-month double-blind stage [J].
GimenezRoldan, S ;
Tolosa, E ;
Burguera, JA ;
Chacon, J ;
Liano, H ;
Forcadell, F .
CLINICAL NEUROPHARMACOLOGY, 1997, 20 (01) :67-76