An overview of structural DNA Nanotechnology

被引:339
作者
Seeman, Nadrian C. [1 ]
机构
[1] NYU, Dept Chem, New York, NY 10003 USA
关键词
branched DNA; sticky-ended cohesion; DNA-based computation; DNA polyhedra; DNA nanomechanical devices; DNA architecture; DNA crystals; translation devices; nanoparticle organization;
D O I
10.1007/s12033-007-0059-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Structural DNA Nanotechnology uses unusual DNA motifs to build target shapes and arrangements. These unusual motifs are generated by reciprocal exchange of DNA backbones, leading to branched systems with many strands and multiple helical domains. The motifs may be combined by sticky ended cohesion, involving hydrogen bonding or covalent interactions. Other forms of cohesion involve edge-sharing or paranemic interactions of double helices. A large number of individual species have been developed by this approach, including polyhedral catenanes, a variety of single-stranded knots, and Borromean rings. In addition to these static species, DNA-based nanomechanical devices have been produced that are ultimately targeted to lead to nanorobotics. Many of the key goals of structural DNA nanotechnology entail the use of periodic arrays. A variety of 21) DNA arrays have been produced with tunable features, such as patterns and cavities. DNA molecules have be used successfully in DNA-based computation as molecular representations of Wang tiles, whose self-assembly can be programmed to perform a calculation. About 4 years ago, on the fiftieth anniversary of the double helix, the area appeared to be at the cusp of a truly exciting explosion of applications; this was a correct assessment, and much progress has been made in the intervening period.
引用
收藏
页码:246 / 257
页数:12
相关论文
共 87 条
[1]   MOLECULAR COMPUTATION OF SOLUTIONS TO COMBINATORIAL PROBLEMS [J].
ADLEMAN, LM .
SCIENCE, 1994, 266 (5187) :1021-1024
[2]   Two computational primitives for algorithmic self-assembly: Copying and counting [J].
Barish, RD ;
Rothemund, PWK ;
Winfree, E .
NANO LETTERS, 2005, 5 (12) :2586-2592
[3]   DNA nanomachines [J].
Bath, Jonathan ;
Turberfield, Andrew J. .
NATURE NANOTECHNOLOGY, 2007, 2 (05) :275-284
[4]   GENE SYNTHESIS MACHINES - DNA CHEMISTRY AND ITS USES [J].
CARUTHERS, MH .
SCIENCE, 1985, 230 (4723) :281-285
[5]   SYNTHESIS FROM DNA OF A MOLECULE WITH THE CONNECTIVITY OF A CUBE [J].
CHEN, JH ;
SEEMAN, NC .
NATURE, 1991, 350 (6319) :631-633
[6]   THE ELECTROPHORETIC PROPERTIES OF A DNA CUBE AND ITS SUBSTRUCTURE CATENANDS [J].
CHEN, JH ;
SEEMAN, NC .
ELECTROPHORESIS, 1991, 12 (09) :607-611
[7]   Molecular Borromean rings [J].
Chichak, KS ;
Cantrill, SJ ;
Pease, AR ;
Chiu, SH ;
Cave, GWV ;
Atwood, JL ;
Stoddart, JF .
SCIENCE, 2004, 304 (5675) :1308-1312
[8]   CONSTRUCTION OF BIOLOGICALLY FUNCTIONAL BACTERIAL PLASMIDS IN-VITRO [J].
COHEN, SN ;
CHANG, ACY ;
BOYER, HW ;
HELLING, RB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1973, 70 (11) :3240-3244
[9]   Double cohesion in structural DNA nanotechnology [J].
Constantinou, Pamela E. ;
Wang, Tong ;
Kopatsch, Jens ;
Israel, Lisa B. ;
Zhang, Xiaoping ;
Ding, Baoquan ;
Sherman, William B. ;
Wang, Xing ;
Zheng, Jianping ;
Sha, Ruojie ;
Seeman, Nadrian C. .
ORGANIC & BIOMOLECULAR CHEMISTRY, 2006, 4 (18) :3414-3419
[10]   Operation of a DNA robot arm inserted into a 2D DNA crystalline substrate [J].
Ding, Baoquan ;
Seeman, Nadrian C. .
SCIENCE, 2006, 314 (5805) :1583-1585