Diagnostic protein discovery using liquid chromatography/mass spectrometry for proteolytic peptide targeting

被引:13
作者
Koomen, JM [1 ]
Zhao, HT [1 ]
Li, DH [1 ]
Nasser, W [1 ]
Hawke, DH [1 ]
Abbruzzese, JL [1 ]
Baggerly, KA [1 ]
Kobayashi, R [1 ]
机构
[1] Univ Texas, MD Anderson Canc Ctr, Houston, TX 77030 USA
关键词
D O I
10.1002/rcm.1963
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A peptide targeting method has been developed for diagnostic protein discovery, which combines proteolytic digestion of fractionated plasma proteins and liquid chromatography coupled to electrospray time-of-flight mass spectrometry (LC/ESI-TOFMS) profiling. Proteolysis prior to profiling overcomes molecular weight limitations and compensates for the poor sensitivity of matrix-assisted laser desorption/ionization (MALDI) protein profiling. LC/MS increases the peak capacity compared to crude fractionation techniques or single sample MALDI analysis. Differentially expressed peptides are targeted in the mass chromatograms using bioinformatic techniques and subsequently sequenced with MALDI tandem MS. In a model study comparing pancreatic cancer patients to controls, 74% of the peptide targets were successfully sequenced. This profiling method was superior to previous experiments using single sample MALDI analysis for protein profiling or proteolytic peptide profiling, because more potential protein markers were identified. Copyright (c) 2005 John Wiley & Sons, Ltd.
引用
收藏
页码:1624 / 1636
页数:13
相关论文
共 40 条
[1]   Toward a human blood serum proteome - Analysis by multidimensional separation coupled with mass spectrometry [J].
Adkins, JN ;
Varnum, SM ;
Auberry, KJ ;
Moore, RJ ;
Angell, NH ;
Smith, RD ;
Springer, DL ;
Pounds, JG .
MOLECULAR & CELLULAR PROTEOMICS, 2002, 1 (12) :947-955
[2]   Quantifying reproducibility for differential proteomics: noise analysis for protein liquid chromatography-mass spectrometry of human serum [J].
Anderle, M ;
Roy, S ;
Lin, H ;
Becker, C ;
Joho, K .
BIOINFORMATICS, 2004, 20 (18) :3575-3582
[3]  
Bienvenut WV, 2002, PROTEOMICS, V2, P868, DOI 10.1002/1615-9861(200207)2:7<868::AID-PROT868>3.0.CO
[4]  
2-D
[5]  
BUAMAH PK, 1985, CLIN CHEM, V31, P876
[6]  
Chan K. C., 2004, CLIN PROTEOM, V1, P101, DOI DOI 10.1385/CP:1:2:101
[7]   Quantitative profiling of proteins in complex mixtures using liquid chromatography and mass spectrometry [J].
Chelius, D ;
Bondarenko, PV .
JOURNAL OF PROTEOME RESEARCH, 2002, 1 (04) :317-323
[8]   Differential screening and mass mapping of proteins from premalignant and cancer cell lines using nonporous reversed-phase HPLC coupled with mass spectrometric analysis [J].
Chong, BE ;
Hamler, RL ;
Lubman, DM ;
Ethier, SP ;
Rosenspire, AJ ;
Miller, FR .
ANALYTICAL CHEMISTRY, 2001, 73 (06) :1219-1227
[9]   Role of accurate mass measurement (±10 ppm) in protein identification strategies employing MS or MS MS and database searching [J].
Clauser, KR ;
Baker, P ;
Burlingame, AL .
ANALYTICAL CHEMISTRY, 1999, 71 (14) :2871-2882
[10]   High-resolution serum proteomic features for ovarian cancer detection [J].
Conrads, TP ;
Fusaro, VA ;
Ross, S ;
Johann, D ;
Rajapakse, V ;
Hitt, BA ;
Steinberg, SM ;
Kohn, EC ;
Fishman, DA ;
Whiteley, G ;
Barrett, JC ;
Liotta, LA ;
Petricoin, EF ;
Veenstra, TD .
ENDOCRINE-RELATED CANCER, 2004, 11 (02) :163-178