A novel concept for evaluation of biofilm adhesion strength by applying tensile force and shear force

被引:52
作者
Ohashi, A
Harada, H
机构
关键词
adhesion strength; attached biofilm reactor; cavity formation; denitrifying biofilm; extracellular biopolymer; shear force; sloughing; tensile force;
D O I
10.1016/0273-1223(96)00647-6
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A novel methodology is proposed in this study to evaluate biofilm adhesion strength in two different ways: by measuring detached biomass caused by tensile force and by shear force. Tensile force was provided by centrifuging biofilm-attached plates installed on rotary tables. Shear force was provided by colliding biofilm-attached plates by gravity. Test biofilms consisting of denitrifiers were formed on the flat surfaces of square (25 cm(2)) plates that had been submerged in a rectangular open-channel reactor. The detachment tests revealed that, although biofilm adhesion strength was relatively high at the earlier growth stage, it drastically decreased at the later stage. The most weakened location toward biofilm depth was observed at the substratum surface, at which the adhesion strength by tensile force dropped from a several Pa to below 1 Pa as biofilms became aged. The adhesion strength by shear force was all the time more than 100 times as large as that by tensile force, even though having a similar behavior. The proportion of cavity, i.e., biofilm-absent area at the biofilm/substratum interface, increased as biofilms became mature. Cavity formation was strongly responsible for lessening the adhesion strength. It is suggested that biofilm slough-off is caused by the decline of adhesion strength by tensile force rather than by shear force. Copyright (C) 1996 IAWQ.
引用
收藏
页码:201 / 211
页数:11
相关论文
共 8 条
[1]   PROCESSES GOVERNING PRIMARY BIOFILM FORMATION [J].
BRYERS, JD ;
CHARACKLIS, WG .
BIOTECHNOLOGY AND BIOENGINEERING, 1982, 24 (11) :2451-2476
[2]   FOULING BIOFILM DEVELOPMENT - A PROCESS ANALYSIS [J].
CHARACKLIS, WG .
BIOTECHNOLOGY AND BIOENGINEERING, 1981, 23 (09) :1923-1960
[3]  
CHARACKLIS WG, 1990, BIOFILMS, P362
[4]   PURIFICATION AND CHARACTERIZATION OF EXTRACELLULAR POLYSACCHARIDE FROM ACTIVATED SLUDGES [J].
HORAN, NJ ;
ECCLES, CR .
WATER RESEARCH, 1986, 20 (11) :1427-1432
[5]   ADHESION STRENGTH OF BIOFILM DEVELOPED IN AN ATTACHED-GROWTH REACTOR [J].
OHASHI, A ;
HARADA, H .
WATER SCIENCE AND TECHNOLOGY, 1994, 29 (10-11) :281-288
[6]  
RITTMANN BE, 1989, LIFE SCI R, V46, P49
[7]   THE EFFECT OF SHEAR-STRESS ON BIOFILM LOSS RATE [J].
RITTMANN, BE .
BIOTECHNOLOGY AND BIOENGINEERING, 1982, 24 (02) :501-506
[8]  
1986, HDB AIR MECH, P42