Wigner distribution function for finite systems

被引:76
作者
Atakishiyev, NM [1 ]
Chumakov, SM [1 ]
Wolf, KB [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Invest Matemat Aplicadas & Sistemas, Cuernavaca 62251, Morelos, Mexico
关键词
D O I
10.1063/1.532636
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct a Wigner distribution function for finite data sets. It is based on a finite optical system; a linear wave guide where the finite number of discrete sensors is equal to the number of modes which the guide can carry. The dynamical group for this model is SU(2) and the wave functions are sets of N = 2l +1 data points. The Wigner distribution function assigns classical c-numbers to the operators of position, momentum, and wave guide mode. (C) 1998 American Institute of Physics. [S0022-2488(98)00312-0].
引用
收藏
页码:6247 / 6261
页数:15
相关论文
共 29 条
[1]  
[Anonymous], 1991, CLASSICAL ORTHOGONAL, DOI DOI 10.1007/978-3-642-74748-9
[2]  
[Anonymous], 1991, REPRESENTATION LIE G
[3]  
ATAKISHIYEV NM, 1994, REV MEX FIS, V40, P366
[4]   Fractional Fourier-Kravchuk transform [J].
Atakishiyev, NM ;
Wolf, KB .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1997, 14 (07) :1467-1477
[5]  
BARTELT H, 1980, ISRAEL J TECHNOL, V18, P260
[6]   WIGNER DISTRIBUTION FUNCTION AND ITS OPTICAL PRODUCTION [J].
BARTELT, HO ;
BRENNER, KH ;
LOHMANN, AW .
OPTICS COMMUNICATIONS, 1980, 32 (01) :32-38
[7]  
BIEDENHARN LC, 1981, ENCY MATH ITS APPL S
[8]   WIGNER DISTRIBUTION FUNCTION DISPLAY OF COMPLEX 1D SIGNALS [J].
BRENNER, KH ;
LOHMANN, AW .
OPTICS COMMUNICATIONS, 1982, 42 (05) :310-314
[9]   Dicke model: Quantum nonlinear dynamics and collective phenomena [J].
Chumakov, SM ;
Kozierowski, M .
QUANTUM AND SEMICLASSICAL OPTICS, 1996, 8 (04) :775-803
[10]  
CHUMAKOV SM, 1997, 65 IIMAS UNAM