Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat

被引:363
作者
Yahiaoui, N [1 ]
Srichumpa, P [1 ]
Dudler, R [1 ]
Keller, B [1 ]
机构
[1] Univ Zurich, Inst Plant Biol, CH-8008 Zurich, Switzerland
关键词
wheat; haplotype; positional cloning; polyploidy; disease resistance; powdery mildew;
D O I
10.1046/j.1365-313X.2003.01977.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
In wheat, race-specific resistance to the fungal pathogen powdery mildew (Blumeria graminis f. sp. tritici) is controlled by the Pm genes. There are 10 alleles conferring resistance at the Pm3 locus (Pm3a to Pm3j) on chromosome 1AS of hexaploid bread wheat (Triticum aestivum L.). The genome of hexaploid wheat has a size of 1.6 x 10(10) bp and contains more than 80% of repetitive sequences, making positional cloning difficult. Here, we demonstrate that the combined analysis of genomes from wheat species with different ploidy levels can be exploited for positional cloning in bread wheat. We have mapped the Pm3b gene in hexaploid wheat to a genetic interval of 0.97 centimorgan (cM). The diploid T. monococcum and the tetraploid T. turgidum ssp. durum provided models for the A genome of hexaploid wheat and allowed to establish a physical contig spanning the Pm3 locus. Although the haplotypes at the Pm3 locus differed markedly between the three species, a large resistance gene-like family specific to wheat group 1 chromosomes was consistently found at the Pm3 locus. A candidate gene for Pm3b was identified using partial sequence conservation between resistant line Chul and T. monococcum cv. DV92. A susceptible Pm3b mutant, carrying a single-base pair deletion in the coding region of the candidate gene was isolated. When tested in a single cell transformation assay, the Pm3b candidate gene conferred race-specific resistance to powdery mildew. These results demonstrate that the candidate gene, a member of the coiled-coil nucleotide binding site leucine-rich repeat (NBS-LRR) type of disease resistance genes, is the Pm3b gene.
引用
收藏
页码:528 / 538
页数:11
相关论文
共 39 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   NEAR-ISOGENIC LINES OF WHEAT WITH GENES FOR RESISTANCE TO ERYSIPHE GRAMINIS F SP TRITICI [J].
BRIGGLE, LW .
CROP SCIENCE, 1969, 9 (01) :70-&
[3]   LINKAGE OF RESISTANCE TO ERYSIPHE GRAMINIS F SP TRITICI (PM3) AND HAIRY GLUME (HG) ON CHROMOSOME 1A OF WHEAT [J].
BRIGGLE, LW ;
SEARS, ER .
CROP SCIENCE, 1966, 6 (06) :559-&
[4]   A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta [J].
Bryan, GT ;
Wu, KS ;
Farrall, L ;
Jia, YL ;
Hershey, HP ;
McAdams, SA ;
Faulk, KN ;
Donaldson, GK ;
Tarchini, R ;
Valent, B .
PLANT CELL, 2000, 12 (11) :2033-2045
[5]   Construction and characterization of a half million clone BAC library of durum wheat (Triticum turgidum ssp durum) [J].
Cenci, A ;
Chantret, N ;
Kong, X ;
Gu, Y ;
Anderson, OD ;
Fahima, T ;
Distelfeld, A ;
Dubcovsky, J .
THEORETICAL AND APPLIED GENETICS, 2003, 107 (05) :931-939
[6]   APPLICATION OF 2 MICROSATELLITE SEQUENCES IN WHEAT STORAGE PROTEINS AS MOLECULAR MARKERS [J].
DEVOS, KM ;
BRYAN, GJ ;
COLLINS, AJ ;
STEPHENSON, P ;
GALE, MD .
THEORETICAL AND APPLIED GENETICS, 1995, 90 (02) :247-252
[7]   Structure, function and evolution of plant disease resistance genes [J].
Ellis, J ;
Dodds, P ;
Pryor, T .
CURRENT OPINION IN PLANT BIOLOGY, 2000, 3 (04) :278-284
[8]  
Faris JD, 2003, GENETICS, V164, P311
[9]  
FELSENSTEIN J, 1985, EVOLUTION, V39, P783, DOI 10.1111/j.1558-5646.1985.tb00420.x
[10]   Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome [J].
Feuillet, C ;
Travella, S ;
Stein, N ;
Albar, L ;
Nublat, A ;
Keller, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (25) :15253-15258