Confirmation of the Domino-Cascade Model by LiFePO4/FePO4 Precession Electron Diffraction

被引:150
作者
Brunetti, G. [2 ]
Robert, D. [1 ]
Bayle-Guillemaud, P.
Rouviere, J. L.
Rauch, E. F. [3 ]
Martin, J. F. [1 ]
Colin, J. F. [1 ]
Bertin, F. [2 ]
Cayron, C. [1 ]
机构
[1] CEA, LITEN, F-38054 Grenoble, France
[2] CEA, LETI, F-38054 Grenoble, France
[3] Univ Grenoble, CNRS, Sci & Ingn Mat & Proc, Grenoble INP UJF, F-38402 St Martin Dheres, France
关键词
lithium batteries; LiFePO4; TEM; phase mapping; precession electron diffraction; BATTERY MATERIALS; MISCIBILITY GAP; SOLID-SOLUTION; ORIENTATION; SIZE; LIXFEPO4; SYSTEM; FE; EXISTENCE; CATHODES;
D O I
10.1021/cm201783z
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A recent transmission electron microscopy (TEM) method using precession electron diffraction (PED) was used to obtain LiFePO4 and FePO4 phase mapping at the nanometer-scale level on a large number of particles of sizes between 50 and 300 nm in a partially charged cathode. Despite the similarity of the two phases (the difference of lattice parameters is <5%), the method gives clear results that have been confirmed using high-resolution transmission electron microscopy (HRTEM) and energy-filtered transmission electron microscopy/electron energy loss spectroscopy (EFTEM/EELS) experiments. The PED maps show that the particles are either fully lithiated or fully delithiated and, therefore, bring a strong support to the domino-cascade model at the nanoscale level (scale of a particle). A core-shell model or spinodal decomposition at mesoscale (scale of agglomerates of particles) is possible. Size effects on the transformation are also discussed.
引用
收藏
页码:4515 / 4524
页数:10
相关论文
共 42 条
[1]   Lithium extraction/insertion in LiFePO4:: an X-ray diffraction and Mossbauer spectroscopy study [J].
Andersson, AS ;
Kalska, B ;
Häggström, L ;
Thomas, JO .
SOLID STATE IONICS, 2000, 130 (1-2) :41-52
[2]  
Armand M., 2002, World Patent, Patent No. 0227823
[3]   Nonstoichiometric LiFePO4: Defects and Related Properties [J].
Axmann, P. ;
Stinner, C. ;
Wohlfahrt-Mehrens, M. ;
Mauger, A. ;
Gendron, F. ;
Julien, C. M. .
CHEMISTRY OF MATERIALS, 2009, 21 (08) :1636-1644
[4]   Response to "unsupported claims of ultrafast charging of Li-ion batteries" [J].
Ceder, G. ;
Kang, B. .
JOURNAL OF POWER SOURCES, 2009, 194 (02) :1024-1028
[5]   Electron microscopy study of the LiFePO4 to FePO4 phase transition [J].
Chen, GY ;
Song, XY ;
Richardson, TJ .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (06) :A295-A298
[6]  
CHUNG SY, 2002, NATURE, V1, P1123
[7]   Size effects on carbon-free LiFePO4 powders [J].
Delacourt, C. ;
Poizot, P. ;
Levasseur, S. ;
Masquelier, C. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (07) :A352-A355
[8]   Crystal chemistry of the olivine-type LixFePO4 system (0 ≤ x ≤ 1) between 25 and 370°C [J].
Delacourt, C ;
Rodríguez-Carvajal, J ;
Schmitt, B ;
Tarascon, JM ;
Masquelier, C .
SOLID STATE SCIENCES, 2005, 7 (12) :1506-1516
[9]   The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1 [J].
Delacourt, C ;
Poizot, P ;
Tarascon, JM ;
Masquelier, C .
NATURE MATERIALS, 2005, 4 (03) :254-260
[10]   Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model [J].
Delmas, C. ;
Maccario, M. ;
Croguennec, L. ;
Le Cras, F. ;
Weill, F. .
NATURE MATERIALS, 2008, 7 (08) :665-671