Hydrogel-actuated integrated responsive systems (HAIRS): Moving towards adaptive materials

被引:62
作者
Kim, Philseok [1 ,2 ]
Zarzar, Lauren D. [3 ]
He, Ximin [1 ]
Grinthal, Alison [1 ]
Aizenberg, Joanna [1 ,2 ,3 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Harvard Univ, Wyss Inst Biol Inspired Engn, Cambridge, MA 02138 USA
[3] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
关键词
Adaptive and dynamic architectures; Environmentally responsive systems; Sustainable systems; Smart and intelligent materials; Reconfigurable surfaces; Biomimetics; Nanofabrication; High-aspect-ratio nanostructures; Hydrogel; Sensors and actuators; CONJUGATED POLYMER ACTUATORS; N-ISOPROPYLACRYLAMIDE; PHOTONIC CRYSTALS; INSULIN-RELEASE; SURFACES; NANOSTRUCTURES; CILIA; GEL; PH; EQUILIBRIUM;
D O I
10.1016/j.cossms.2011.05.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The move toward sustainability and efficiency in nearly every field calls for dynamic materials that can harvest energy from and adapt to a changing environment. Here we review our recently developed, widely applicable strategy for adaptive surface design that integrates two rarely associated categories of materials - nanostructured surfaces and hydrogels - into a hybrid architecture. The nanostructure arrays provide unique topographic patterns that confer wetting, optical, and many other functions but on their own are generally static; by embedding them in a layer of responsive hydrogel, we channel the mechanical forces generated within the swelling/contracting gel to reversibly reconfigure the nanostructures in response to stimuli. Since the sensing and responding components are structurally distinct, they can each be programmed independently to match potentially almost any type of environmental change with almost any type of output. Several of our recent advances in nanofabrication make it possible to choose from an entire spectrum of nanostnictured materials, stiffnesses, shapes, symmetries, orientations, and large-scale surface gradients, enabling a given stimulus to be translated into a vast assortment of complex multiscale patterns and adaptive responses. The gel chemistry and nanostructure flexibility can be further optimized for incorporating the surfaces into a variety of structures and environments. We envision using this platform to create a generation of sustainable, self-adapting, and self-reporting materials. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:236 / 245
页数:10
相关论文
共 83 条
[1]   Tunable Colors in Opals and Inverse Opal Photonic Crystals [J].
Aguirre, Carlos I. ;
Reguera, Edilso ;
Stein, Andreas .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (16) :2565-2578
[2]   Nanonails: A simple geometrical approach to electrically tunable superlyophobic surfaces [J].
Ahuja, A. ;
Taylor, J. A. ;
Lifton, V. ;
Sidorenko, A. A. ;
Salamon, T. R. ;
Lobaton, E. J. ;
Kolodner, P. ;
Krupenkin, T. N. .
LANGMUIR, 2008, 24 (01) :9-14
[3]   Purity of the sacred lotus, or escape from contamination in biological surfaces [J].
Barthlott, W ;
Neinhuis, C .
PLANTA, 1997, 202 (01) :1-8
[4]   Electrochemical properties and actuation mechanisms of polyacrylamide hydrogel for artificial muscle application [J].
Bassil, M. ;
Davenas, J. ;
EL Tahchi, M. .
SENSORS AND ACTUATORS B-CHEMICAL, 2008, 134 (02) :496-501
[5]   Microfluidic tectonics: A comprehensive construction platform for microfluidic systems [J].
Beebe, DJ ;
Moore, JS ;
Yu, Q ;
Liu, RH ;
Kraft, ML ;
Jo, BH ;
Devadoss, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (25) :13488-13493
[6]   Functional hydrogel structures for autonomous flow control inside microfluidic channels [J].
Beebe, DJ ;
Moore, JS ;
Bauer, JM ;
Yu, Q ;
Liu, RH ;
Devadoss, C ;
Jo, BH .
NATURE, 2000, 404 (6778) :588-+
[7]   Biomimetics: lessons from nature - an overview [J].
Bhushan, Bharat .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 367 (1893) :1445-1486
[8]   Designing ciliated surfaces that regulate deposition of solid particles [J].
Branscomb, Jaclyn ;
Alexeev, Alexander .
SOFT MATTER, 2010, 6 (17) :4066-4069
[9]   Actuation systems in plants as prototypes for bioinspired devices [J].
Burgert, Ingo ;
Fratzl, Peter .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 367 (1893) :1541-1557
[10]   Hydrogels for Soft Machines [J].
Calvert, Paul .
ADVANCED MATERIALS, 2009, 21 (07) :743-756