R-type calcium channels contribute to afterdepolarization and bursting in hippocampal CA1 pyramidal neurons

被引:133
作者
Metz, AE
Jarsky, T
Martina, M
Spruston, N
机构
[1] Northwestern Univ, Dept Neurobiol & Physiol, Evanston, IL 60208 USA
[2] Northwestern Univ, Inst Neurosci, Evanston, IL 60208 USA
[3] Feinberg Sch Med, Dept Physiol, Chicago, IL 60611 USA
关键词
ADP; intrinsic excitability; nickel; patch clamp; afterhyperpolarization; persistent sodium current;
D O I
10.1523/JNEUROSCI.0624-05.2005
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Action potentials in pyramidal neurons are typically followed by an afterdepolarization ( ADP), which in many cells contributes to intrinsic burst firing. Despite the ubiquity of this common excitable property, the responsible ion channels have not been identified. Using current-clamp recordings in hippocampal slices, we find that the ADP in CA1 pyramidal neurons is mediated by an Ni2(+)-sensitive calcium tail current. Voltage-clamp experiments indicate that the Ni2(+)- sensitive current has a pharmacological and biophysical profile consistent with R-type calcium channels. These channels are available at the resting potential, are activated by the action potential, and remain open long enough to drive the ADP. Because the ADP correlates directly with burst firing in CA1 neurons, R-type calcium channels are crucial to this important cellular behavior, which is known to encode hippocampal place fields and enhance synaptic plasticity.
引用
收藏
页码:5763 / 5773
页数:11
相关论文
共 80 条
[1]   Veratridine-enhanced persistent sodium current induces bursting in CA1 pyramidal neurons [J].
Alkadhi, KA ;
Tian, LM .
NEUROSCIENCE, 1996, 71 (03) :625-632
[2]   Calcium block of Na+ channels and its effect on closing rate [J].
Armstrong, CM ;
Cota, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (07) :4154-4157
[3]   CALCIUM-ION AS A COFACTOR IN NA CHANNEL GATING [J].
ARMSTRONG, CM ;
COTA, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (15) :6528-6531
[4]   Ionic basis of spike after-depolarization and burst generation in adult rat hippocampal CA1 pyramidal cells [J].
Azouz, R ;
Jensen, MS ;
Yaari, Y .
JOURNAL OF PHYSIOLOGY-LONDON, 1996, 492 (01) :211-223
[5]   CLASSES OF CALCIUM CHANNELS IN VERTEBRATE CELLS [J].
BEAN, BP .
ANNUAL REVIEW OF PHYSIOLOGY, 1989, 51 :367-384
[6]  
Bourinet E, 1996, J NEUROSCI, V16, P4983
[7]   DIFFERENT CA2+ CHANNELS IN SOMA AND DENDRITES OF HIPPOCAMPAL PYRAMIDAL NEURONS MEDIATE SPIKE-INDUCED CA2+ INFLUX [J].
CHRISTIE, BR ;
ELIOT, LS ;
ITO, K ;
MIYAKAWA, H ;
JOHNSTON, D .
JOURNAL OF NEUROPHYSIOLOGY, 1995, 73 (06) :2553-2557
[8]  
Colbert CM, 1996, J NEUROSCI, V16, P6676
[9]   Ion channel properties underlying axonal action potential initiation in pyramidal neurons [J].
Colbert, CM ;
Pan, EH .
NATURE NEUROSCIENCE, 2002, 5 (06) :533-538
[10]   THALAMIC BURSTING MECHANISM - AN INWARD SLOW CURRENT REVEALED BY MEMBRANE HYPERPOLARIZATION [J].
DESCHENES, M ;
ROY, JP ;
STERIADE, M .
BRAIN RESEARCH, 1982, 239 (01) :289-293