Rough descriptions of ruin for a general class of surplus processes

被引:26
作者
Nyrhinen, H [1 ]
机构
[1] Univ Helsinki, Rolf Nevanlinna Inst, FIN-00014 Helsinki, Finland
关键词
ruin problem; large deviations theory;
D O I
10.1239/aap/1035228205
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let {Y-n \ n = 1, 2,...} be a stochastic process and M a positive real number. Define the time of ruin by T = inf{n \ Y-n > M} (T = +infinity if Y-n less than or equal to M for n = 1, 2,...). Using the techniques of large deviations theory we obtain rough exponential estimates for ruin probabilities for a general class of processes. Special attention is given to the probability that ruin occurs up to a certain time point. We also generalize the concept of the safety loading and consider its importance to ruin probabilities.
引用
收藏
页码:1008 / 1026
页数:19
相关论文
共 36 条
[1]   Large deviations results for subexponential tails, with applications to insurance risk [J].
Asmussen, S ;
Kluppelberg, C .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1996, 64 (01) :103-125
[2]  
ASMUSSEN S, 1989, SCAND ACTUARIAL J, V89, P69
[3]  
BJORK T, 1988, SCAND ACTUARIAL J, V88, P77
[4]   LARGE DEVIATIONS FOR SOME WEAKLY DEPENDENT RANDOM-PROCESSES [J].
BURTON, RM ;
DEHLING, H .
STATISTICS & PROBABILITY LETTERS, 1990, 9 (05) :397-401
[5]  
Cramer H., 1955, Collective risk theory: A survey of the theory from the point of view of the theory of stochastic processes
[6]  
Daykin C., 1994, PRACTICAL RISK THEOR
[7]  
DEACOSTA A, 1985, Z WAHRSCHEINLICHKEIT, V69, P551
[8]  
DEACOSTA A, 1991, PROGR PROB, V28, P215
[9]  
Dembo A., 1993, Large deviations techniques and applications
[10]  
DJEHICHE B, 1993, SCAND ACTUARIAL J, V93, P42