On the denseness of Herglotz wave functions and electromagnetic Herglotz pairs in Sobolev spaces

被引:53
作者
Colton, D
Kress, R
机构
[1] Univ Gottingen, Inst Numer & Angew Math, D-37083 Gottingen, Germany
[2] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
关键词
Acoustic wave scattering - Approximation theory - Eigenvalues and eigenfunctions - Electric fields - Integral equations - Integration - Maxwell equations - Sampling - Theorem proving - Variational techniques - Wave equations;
D O I
10.1002/mma.277
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let D subset of R-3 be a bounded domain with connected boundary partial derivativeD of class C-2. It is shown that Herglotz wave functions are dense in the space of solutions to the Helmholtz equation with respect to the norm in H-1(D) and that the electric fields of electromagnetic Herglotz pairs are dense in the space of solutions to curl curl E = k(2)E with respect to the norm in H-curl(D). Two proofs are given in each case, one based on the denseness of the traces of Herglotz wave functions on partial derivativeD and the other on variational methods. Copyright (C) 2001 John Wiley & Sons, Ltd.
引用
收藏
页码:1289 / 1303
页数:15
相关论文
共 11 条
[1]  
CAKONI F, IN PRESS DIRECT INVE
[2]  
CESSENAT M, 1996, MATH METHODS ELECTRO
[3]  
Colton D, 2013, CLASS APPL MATH
[4]   Recent developments in inverse acoustic scattering theory [J].
Colton, D ;
Coyle, J ;
Monk, P .
SIAM REVIEW, 2000, 42 (03) :369-414
[5]  
Colton D., 1998, INVERSE ACOUSTIC ELE, DOI DOI 10.1007/978-3-662-03537-5
[6]  
COLTON D, IN PRESS LINEAR SAMP
[7]  
COLTON D, IN PRESS P ED MATH S
[9]  
KERSTEN H, 1980, RESULTATE MATH, V3, P17
[10]  
KRESS R, 2001, SCATTERING, P175