The yeast S phase checkpoint enables replicating chromosomes to bi-orient and restrain spindle extension during S phase distress

被引:31
作者
Bachant, J [1 ]
Jessen, SR [1 ]
Kavanaugh, SE [1 ]
Fielding, CS [1 ]
机构
[1] Univ Calif Riverside, Dept Cell Biol & Neurosci, Riverside, CA 92521 USA
关键词
D O I
10.1083/jcb.200412076
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The budding yeast S phase checkpoint responds to hydroxyurea-induced nucleotide depletion by preventing replication fork collapse and the segregation of unreplicated chromosomes. Although the block to chromosome segregation has been thought to occur by inhibiting anaphase, we show checkpoint-defective rad53 mutants undergo cycles of spindle extension and collapse after hydroxyurea treatment that are distinct from anaphase cells. Furthermore, chromatid cohesion, whose dissolution triggers anaphase, is dispensable for S phase checkpoint arrest. Kinetochore-spindle attachments are T required to prevent spindle extension during replication blocks, and chromosomes with two centromeres or an origin of replication juxtaposed to a centromere rescue the rad53 checkpoint defect. These observations suggest that checkpoint signaling is required to generate an inward force involved in maintaining preanaphase spindle integrity during DNA replication distress. We propose that by promoting replication fork integrity under these conditions Rad53 ensures centromere duplication. Replicating chromosomes can then bi-orient in a cohesin-independent manner to restrain untimely spindle extension.
引用
收藏
页码:999 / 1012
页数:14
相关论文
共 43 条
[1]   Two distinct pathways for inhibiting Pds1 ubiquitination in response to DNA damage [J].
Agarwal, R ;
Tang, ZY ;
Yu, HT ;
Cohen-Fix, O .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (45) :45027-45033
[2]   Mrc1 transduces signals of DNA replication stress to activate Rad53 [J].
Alcasabas, AA ;
Osborn, AJ ;
Bachant, J ;
Hu, FH ;
Werler, PJH ;
Bousset, K ;
Furuya, K ;
Diffley, JFX ;
Carr, AM ;
Elledge, SJ .
NATURE CELL BIOLOGY, 2001, 3 (11) :958-965
[3]   THE SAD1/RAD53 PROTEIN-KINASE CONTROLS MULTIPLE CHECKPOINTS AND DNA DAMAGE-INDUCED TRANSCRIPTION IN YEAST [J].
ALLEN, JB ;
ZHOU, Z ;
SIEDE, W ;
FRIEDBERG, EC ;
ELLEDGE, SJ .
GENES & DEVELOPMENT, 1994, 8 (20) :2401-2415
[4]   The SUMO-1 isopeptidase Smt4 is linked to centromeric cohesion through SUMO-1 modification of DNA Topoisomerase II [J].
Bachant, J ;
Alcasabas, A ;
Blat, Y ;
Kleckner, N ;
Elledge, SJ .
MOLECULAR CELL, 2002, 9 (06) :1169-1182
[5]   The budding yeast protein kinase Ipl1/Aurora allows the absence of tension to activate the, spindle checkpoint [J].
Biggins, S ;
Murray, AW .
GENES & DEVELOPMENT, 2001, 15 (23) :3118-3129
[6]   Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region [J].
Blat, Y ;
Kleckner, N .
CELL, 1999, 98 (02) :249-259
[7]   MOVEMENT AND SEGREGATION OF KINETOCHORES EXPERIMENTALLY DETACHED FROM MAMMALIAN CHROMOSOMES [J].
BRINKLEY, BR ;
ZINKOWSKI, RP ;
MOLLON, WL ;
DAVIS, FM ;
PISEGNA, MA ;
PERSHOUSE, M ;
RAO, PN .
NATURE, 1988, 336 (6196) :251-254
[8]   Simple centromere, complex kinetochore: linking spindle microtubules and centromeric DNA in budding yeast [J].
Cheeseman, IM ;
Drubin, DG ;
Barnes, G .
JOURNAL OF CELL BIOLOGY, 2002, 157 (02) :199-203
[9]   Mitotic spindle integrity and kinetochore function linked by the Duo1p/Dam1p complex [J].
Cheeseman, IM ;
Enquist-Newman, M ;
Müller-Reichert, T ;
Drubin, DG ;
Barnes, G .
JOURNAL OF CELL BIOLOGY, 2001, 152 (01) :197-212
[10]   An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast [J].
Ciosk, R ;
Zachariae, W ;
Michaelis, C ;
Shevchenko, A ;
Mann, M ;
Nasmyth, K .
CELL, 1998, 93 (06) :1067-1076