Synthesis and characterization of highly luminescent CdSe-Core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals

被引:815
作者
Xie, RG
Kolb, U
Li, JX
Basché, T
Mews, A
机构
[1] Univ Siegen, Inst Chem Phys, D-57068 Siegen, Germany
[2] Johannes Gutenberg Univ Mainz, Inst Chem Phys, D-55099 Mainz, Germany
关键词
D O I
10.1021/ja042939g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report on the preparation and structural characterization of CdSe nanocrystals, which are covered by a multishell structure from CdS and ZnS. By using the newly developed successive ion layer adhesion and reaction (SILAR) technique, we could gradually change the shell composition from CdS to ZnS in the radial direction. Because of the stepwise adjustment of the lattice parameters in the radial direction, the resulting nanocrystals show a high crystallinity and are almost perfectly spherical, as was investigated by X-ray diffraction and electron microscopy. Also, due to the radial increase of the respective valence- and conduction-band offsets, the nanocrystals are well electronically passivated. This leads to a high fluorescence quantum yield of 70-85% for the amine terminated multishell particles in organic solvents and a quantum yield of up to 50% for mercapto propionic acid-covered particles in water. Finally, we present experimental results that substantiate the superior photochemical and colloidal stability of the multishell particles.
引用
收藏
页码:7480 / 7488
页数:9
相关论文
共 52 条
[1]  
*ACC INC, SCI SOFTW CER 4 2 MS
[2]   Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols [J].
Aldana, J ;
Wang, YA ;
Peng, XG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (36) :8844-8850
[3]   Colloidal two-dimensional systems: CdSe quantum shells and wells [J].
Battaglia, D ;
Li, JJ ;
Wang, YJ ;
Peng, XG .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (41) :5035-5039
[4]   LUMINESCENCE PROPERTIES OF CDSE QUANTUM CRYSTALLITES - RESONANCE BETWEEN INTERIOR AND SURFACE LOCALIZED STATES [J].
BAWENDI, MG ;
CARROLL, PJ ;
WILSON, WL ;
BRUS, LE .
JOURNAL OF CHEMICAL PHYSICS, 1992, 96 (02) :946-954
[5]   Semiconductor nanocrystals as fluorescent biological labels [J].
Bruchez, M ;
Moronne, M ;
Gin, P ;
Weiss, S ;
Alivisatos, AP .
SCIENCE, 1998, 281 (5385) :2013-2016
[7]   Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J].
Chan, WCW ;
Nie, SM .
SCIENCE, 1998, 281 (5385) :2016-2018
[8]   Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors [J].
Clapp, AR ;
Medintz, IL ;
Mauro, JM ;
Fisher, BR ;
Bawendi, MG ;
Mattoussi, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (01) :301-310
[9]   Electroluminescence from single monolayers of nanocrystals in molecular organic devices [J].
Coe, S ;
Woo, WK ;
Bawendi, M ;
Bulovic, V .
NATURE, 2002, 420 (6917) :800-803
[10]  
COLVIN VL, 1994, NATURE, V370, P354, DOI 10.1038/370354a0