A concentration-dependent analysis method for high density protein microarrays
被引:15
作者:
Marina, Ovidiu
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, Sch Med, Dana Farber Canc Inst, Canc Vaccine Ctr, Boston, MA 02115 USA
Case Western Reserve Univ, Sch Med, Cleveland, OH 44106 USAHarvard Univ, Sch Med, Dana Farber Canc Inst, Canc Vaccine Ctr, Boston, MA 02115 USA
Marina, Ovidiu
[1
,4
]
Biernacki, Melinda A.
论文数: 0引用数: 0
h-index: 0
机构:
Dana Farber Canc Inst, Div Hematol Neoplasia, Boston, MA 02115 USAHarvard Univ, Sch Med, Dana Farber Canc Inst, Canc Vaccine Ctr, Boston, MA 02115 USA
Biernacki, Melinda A.
[2
]
Brusic, Vladimir
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, Sch Med, Dana Farber Canc Inst, Canc Vaccine Ctr, Boston, MA 02115 USAHarvard Univ, Sch Med, Dana Farber Canc Inst, Canc Vaccine Ctr, Boston, MA 02115 USA
Brusic, Vladimir
[1
]
Wu, Catherine J.
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, Sch Med, Dana Farber Canc Inst, Canc Vaccine Ctr, Boston, MA 02115 USA
Harvard Univ, Brigham & Womens Hosp, Sch Med, Dept Med, Boston, MA 02115 USAHarvard Univ, Sch Med, Dana Farber Canc Inst, Canc Vaccine Ctr, Boston, MA 02115 USA
Wu, Catherine J.
[1
,3
]
机构:
[1] Harvard Univ, Sch Med, Dana Farber Canc Inst, Canc Vaccine Ctr, Boston, MA 02115 USA
[2] Dana Farber Canc Inst, Div Hematol Neoplasia, Boston, MA 02115 USA
[3] Harvard Univ, Brigham & Womens Hosp, Sch Med, Dept Med, Boston, MA 02115 USA
[4] Case Western Reserve Univ, Sch Med, Cleveland, OH 44106 USA
immune responses;
proteomic;
protein microarray;
antigen identification;
ProtoArray;
D O I:
10.1021/pr700892h
中图分类号:
Q5 [生物化学];
学科分类号:
071010 ;
081704 ;
摘要:
Protein microarray technology is rapidly growing and has the potential to accelerate the discovery of targets of serum antibody responses in cancer, autoimmunity and infectious disease. Analytical tools for interpreting this high-throughput array data, however, are not well-established. We developed a concentration-dependent analysis (CDA) method which normalizes protein microarray data based on the concentration of spotted probes. We show that this analysis samples a data space that is complementary to other commonly employed analyses, and demonstrate experimental validation of 92% of hits identified by the intersection of CDA with other tools. These data support the use of CDA either as a preprocessing step for a more complete proteomic microarray data analysis or as a stand-alone analysis method.