The carbon and sulfur cycles and atmospheric oxygen from middle Permian to middle Triassic

被引:123
作者
Berner, RA [1 ]
机构
[1] Yale Univ, Dept Geol & Geophys, New Haven, CT 06520 USA
关键词
D O I
10.1016/j.gca.2005.03.021
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The results of a theoretical isotope mass balance model are presented for the time dependence of burial and weathering-plus-degassing fluxes within the combined long-term carbon and sulfur cycles. Averaged data for oceanic delta(13)C and delta(34)S were entered for every million years from 270 to 240 Ma (middle Permian to middle Triassic) to study general trends across the Permian-Triassic boundary. Results show a drop in the rate of global organic matter burial during the late Permian and a predominance of low values during the early-to-middle Triassic. This overall decrease with time is ascribed mainly to epochs of conversion of high biomass forests to low biomass herbaceous vegetation resulting in a decrease in the production of terrestrially derived organic debris. Additional contributions to lessened terrestrial carbon burial were increased aridity and a drop in sea level during the late Permian which led to smaller areas of low-lying coastal wetlands suitable for coal and peat deposition. Mirroring the drop in organic matter deposition was an increase in the burial of sedimentary pyrite, and a dramatic increase in the calculated global mean ratio of pyrite-S to organic-C. High S/C values resulted from an increase of deposition in marine euxinic basins combined with a decrease in the burial of low-pyrite associated terrestrial organic matter. The prediction of increased oceanic anoxia during the late Permian and early Triassic agrees with independent studies of the composition of sedimentary rocks. Weathering plus burial fluxes for organic carbon and pyrite sulfur were used to calculate changes in atmospheric oxygen. The striking result is a continuous drop in O-2 concentration from similar to 30% to similar to 13% over a twenty million year period. This drop was brought about mainly by a decrease in the burial of terrestrially derived organic matter. but with a possible contribution from the weathering of older organic matter on land. It must have exerted a considerable influence on animal evolution because of the role of O-2 in respiration. Some examples are the extinction of many vertebrates, loss of giant insects and amphibians, and the restriction of animals to low elevations. It is concluded that the extinction of plants may have contributed to the extinction of animals. Copyright (C) 2005 Elsevier Ltd.
引用
收藏
页码:3211 / 3217
页数:7
相关论文
共 69 条
[1]   Carbon isotope evidence implying high O2/CO2 ratios in the Permo-Carboniferous atmosphere [J].
Beerling, DJ ;
Lake, JA ;
Berner, RA ;
Hickey, LJ ;
Taylor, DW ;
Royer, DL .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2002, 66 (21) :3757-3767
[2]   How to kill (almost) all life: the end-Permian extinction event [J].
Benton, MJ ;
Twitchett, RJ .
TRENDS IN ECOLOGY & EVOLUTION, 2003, 18 (07) :358-365
[3]   COPSE: A new model of biogeochemical cycling over Phanerozoic time [J].
Bergman, NM ;
Lenton, TM ;
Watson, AJ .
AMERICAN JOURNAL OF SCIENCE, 2004, 304 (05) :397-437
[4]  
Berner R. A, 2004, The Phanerozoic carbon cycle: CO2 and O2
[5]   BURIAL OF ORGANIC-CARBON AND PYRITE SULFUR IN SEDIMENTS OVER PHANEROZOIC TIME - A NEW THEORY [J].
BERNER, RA ;
RAISWELL, R .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1983, 47 (05) :855-862
[6]   Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling [J].
Berner, RA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (07) :4172-4177
[7]   SEDIMENTARY PYRITE FORMATION - AN UPDATE [J].
BERNER, RA .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1984, 48 (04) :605-615
[8]   Modeling atmospheric O2 over Phanerozoic time [J].
Berner, RA .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2001, 65 (05) :685-694
[9]   DRYING, O-2 AND MASS EXTINCTION [J].
BERNER, RA .
NATURE, 1989, 340 (6235) :603-604
[10]  
BESTANE W J, 1980, Revista da Associacao Medica Brasileira, V26, P2