An image-driven parameter estimation problem for a reaction-diffusion glioma growth model with mass effects

被引:186
作者
Hogea, Cosmina [3 ]
Davatzikos, Christos [3 ]
Biros, George [1 ,2 ]
机构
[1] Univ Penn, Dept Mech Engn & Appl Mech, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Comp & Informat Sci, Philadelphia, PA 19104 USA
[3] Univ Penn, Dept Radiol, Sch Biomed Image Anal, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00285-007-0139-x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a framework for modeling gliomas growth and their mechanical impact on the surrounding brain tissue (the so-called, mass-effect). We employ an Eulerian continuum approach that results in a strongly coupled system of nonlinear Partial Differential Equations (PDEs): a reaction-diffusion model for the tumor growth and a piecewise linearly elastic material for the background tissue. To estimate unknown model parameters and enable patient-specific simulations we formulate and solve a PDE-constrained optimization problem. Our two main goals are the following: (1) to improve the deformable registration from images of brain tumor patients to a common stereotactic space, thereby assisting in the construction of statistical anatomical atlases; and (2) to develop predictive capabilities for glioma growth, after the model parameters are estimated for a given patient. To our knowledge, this is the first attempt in the literature to introduce an adjoint-based, PDE-constrained optimization formulation in the context of image-driven modeling spatio-temporal tumor evolution. In this paper, we present the formulation, and the solution method and we conduct 1D numerical experiments for preliminary evaluation of the overall formulation/methodology.
引用
收藏
页码:793 / 825
页数:33
相关论文
共 44 条
[1]  
AKCELIK V, 2005, ACM IEEE SCXY C SER
[2]   A multiple scale model for tumor growth [J].
Alarcón, T ;
Byrne, HM ;
Maini, PK .
MULTISCALE MODELING & SIMULATION, 2005, 3 (02) :440-475
[3]  
ALVORD JE, 2002, PATHOLOGY AGING HUMA
[4]  
[Anonymous], 1999, LINEAR INTEGRAL EQUA
[5]   A mixture theory for the genesis of residual stresses in growing tissues I: A general formulation [J].
Araujo, RP ;
McElwain, DLS .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2005, 65 (04) :1261-1284
[6]   A history of the study of solid tumour growth: The contribution of mathematical modelling [J].
Araujo, RP ;
McElwain, DLS .
BULLETIN OF MATHEMATICAL BIOLOGY, 2004, 66 (05) :1039-1091
[7]   HUMAN-MALIGNANT ASTROCYTOMA XENOGRAFTS MIGRATE IN RAT-BRAIN - A MODEL FOR CENTRAL NERVOUS-SYSTEM CANCER-RESEARCH [J].
BERNSTEIN, JJ ;
GOLDBERG, WJ ;
LAWS, ER .
JOURNAL OF NEUROSCIENCE RESEARCH, 1989, 22 (02) :134-143
[8]   A two-phase model of solid tumour growth [J].
Byrne, HM ;
King, JR ;
MCElwain, DLS ;
Preziosi, L .
APPLIED MATHEMATICS LETTERS, 2003, 16 (04) :567-573
[9]  
CHAPLAIN MAJ, 2003, CANC MODELING SIMULA
[10]   ASSESSMENT OF BRAIN-TUMOR CELL MOTILITY IN-VIVO AND IN-VITRO [J].
CHICOINE, MR ;
SILBERGELD, DL .
JOURNAL OF NEUROSURGERY, 1995, 82 (04) :615-622