Kinetic simulations of magnetized turbulence in astrophysical plasmas

被引:271
作者
Howes, G. G. [1 ]
Dorland, W. [2 ]
Cowley, S. C. [3 ,4 ]
Hammett, G. W. [5 ]
Quataert, E. [1 ]
Schekochihin, A. A. [4 ]
Tatsuno, T. [6 ]
机构
[1] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA
[2] Univ Maryland, CSCAMM, Dept Phys, College Pk, MD 20742 USA
[3] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
[4] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England
[5] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[6] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
基金
英国科学技术设施理事会;
关键词
D O I
10.1103/PhysRevLett.100.065004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This Letter presents the first ab initio, fully electromagnetic, kinetic simulations of magnetized turbulence in a homogeneous, weakly collisional plasma at the scale of the ion Larmor radius (ion gyroscale). Magnetic- and electric-field energy spectra show a break at the ion gyroscale; the spectral slopes are consistent with scaling predictions for critically balanced turbulence of Alfven waves above the ion gyroscale (spectral index -5/3) and of kinetic Alfven waves below the ion gyroscale (spectral indices of -7/3 for magnetic and -1/3 for electric fluctuations). This behavior is also qualitatively consistent with in situ measurements of turbulence in the solar wind. Our findings support the hypothesis that the frequencies of turbulent fluctuations in the solar wind remain well below the ion cyclotron frequency both above and below the ion gyroscale.
引用
收藏
页数:4
相关论文
共 29 条
[1]   Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence [J].
Bale, SD ;
Kellogg, PJ ;
Mozer, FS ;
Horbury, TS ;
Reme, H .
PHYSICAL REVIEW LETTERS, 2005, 94 (21)
[2]   Dominant two-dimensional solar wind turbulence with implications for cosmic ray transport [J].
Bieber, JW ;
Wanner, W ;
Matthaeus, WH .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1996, 101 (A2) :2511-2522
[3]   Small-scale anisotropy and intermittence in high- and low-latitude solar wind [J].
Bigazzi, A ;
Biferale, L ;
Gama, SMA ;
Velli, M .
ASTROPHYSICAL JOURNAL, 2006, 638 (01) :499-507
[4]   Electron magnetohydrodynamic turbulence [J].
Biskamp, D ;
Schwarz, E ;
Zeiler, A ;
Celani, A ;
Drake, JF .
PHYSICS OF PLASMAS, 1999, 6 (03) :751-758
[5]   The anisotropy of electron magnetohydrodynamic turbulence [J].
Cho, J ;
Lazarian, A .
ASTROPHYSICAL JOURNAL, 2004, 615 (01) :L41-L44
[6]   The anisotropy of magnetohydrodynamic Alfvenic turbulence [J].
Cho, JY ;
Vishniac, ET .
ASTROPHYSICAL JOURNAL, 2000, 539 (01) :273-282
[7]   TURBULENCE VISCOSITY AND DISSIPATION IN SOLAR-WIND PLASMA [J].
COLEMAN, PJ .
ASTROPHYSICAL JOURNAL, 1968, 153 (2P1) :371-&
[8]   Electron temperature gradient turbulence [J].
Dorland, W ;
Jenko, F ;
Kotschenreuther, M ;
Rogers, BN .
PHYSICAL REVIEW LETTERS, 2000, 85 (26) :5579-5582
[9]   NON-LINEAR GYROKINETIC EQUATIONS FOR LOW-FREQUENCY ELECTROMAGNETIC-WAVES IN GENERAL PLASMA EQUILIBRIA [J].
FRIEMAN, EA ;
CHEN, L .
PHYSICS OF FLUIDS, 1982, 25 (03) :502-508
[10]   TOWARD A THEORY OF INTERSTELLAR TURBULENCE .2. STRONG ALFVENIC TURBULENCE [J].
GOLDREICH, P ;
SRIDHAR, S .
ASTROPHYSICAL JOURNAL, 1995, 438 (02) :763-775