Potential ecosystem-level effects of genetic variation among populations of Metrosideros polymorpha from a soil fertility gradient in Hawaii

被引:81
作者
Treseder, KK [1 ]
Vitousek, PM [1 ]
机构
[1] Stanford Univ, Dept Biol Sci, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
allozymes; common garden; genetic variation; nutrient cycling; tissue quality;
D O I
10.1007/s004420000523
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
This study assessed intrinsic differences in tissue quality and growth rate among populations of Metrosideros polymorpha native to sites with a range of soil fertilities. We collected seedlings from three Hawaiian mesic forests that were either phosphorus-limited, nitrogen-limited, or relatively fertile. These individuals were grown in a common garden under a factorial high/low, N/P fertilization regime for 1.5 years and then harvested to determine genetic divergence; aboveground growth rate; and lignin, N, and P concentrations in leaves and roots. Allozyme analyses indicated that the three groups had genetically diverged to some degree (genetic distance = 0.036-0.053 among populations). Relative growth rate did not differ significantly among the populations. Senescent leaves from the fertile-site population had the highest N concentrations (due to low N resorption) and had lower lignin concentrations than plants from the N-limited site. Across treatments, P concentrations in senescent leaves were highest in plants from the fertile and P-limited site. Root tissue quality did not generally differ significantly among populations. Since decomposition rate of senescent leaves in this system is related positively to N concentration and negatively to lignin concentration, senescent leaves from the fertile-site population may have a genetic tendency toward faster decay than the others. The intrinsic qualities of the three populations may provide positive feedbacks on nutrient cycling at each site-nutrient availability may be raised to some degree at the fertile site, and reduced at the N- or P-limited sites. Our results suggest that even a small degree of genetic differentiation among groups can influence traits related to nutrient cycling.
引用
收藏
页码:266 / 275
页数:10
相关论文
共 50 条
[1]   PREDICTING LONG-TERM PATTERNS OF MASS-LOSS, NITROGEN DYNAMICS, AND SOIL ORGANIC-MATTER FORMATION FROM INITIAL FINE LITTER CHEMISTRY IN TEMPERATE FOREST ECOSYSTEMS [J].
ABER, JD ;
MELILLO, JM ;
MCCLAUGHERTY, CA .
CANADIAN JOURNAL OF BOTANY-REVUE CANADIENNE DE BOTANIQUE, 1990, 68 (10) :2201-2208
[2]   NITROGEN IMMOBILIZATION IN DECAYING HARDWOOD LEAF LITTER AS A FUNCTION OF INITIAL NITROGEN AND LIGNIN CONTENT [J].
ABER, JD ;
MELILLO, JM .
CANADIAN JOURNAL OF BOTANY-REVUE CANADIENNE DE BOTANIQUE, 1982, 60 (11) :2263-2269
[3]   Nutrient resorption from senescing leaves of perennials: Are there general patterns? [J].
Aerts, R .
JOURNAL OF ECOLOGY, 1996, 84 (04) :597-608
[4]  
[Anonymous], AM NAT
[5]  
[Anonymous], CHALLENGING BIOL PRO
[6]   GENETIC-STRUCTURE AND DIFFERENTIATION IN METROSIDEROS-POLYMORPHA (MYRTACEAE) ALONG ALTITUDINAL GRADIENTS IN MAUI, HAWAII [J].
ARADHYA, KM ;
MUELLERDOMBOIS, D ;
RANKER, TA .
GENETICS RESEARCH, 1993, 61 (03) :159-170
[7]   GENETIC-EVIDENCE FOR RECENT AND INCIPIENT SPECIATION IN THE EVOLUTION OF HAWAIIAN METROSIDEROS (MYRTACEAE) [J].
ARADHYA, KM ;
MUELLERDOMBOIS, D ;
RANKER, TA .
HEREDITY, 1991, 67 :129-138
[8]  
ARADHYA KM, 1992, THESIS U HAWAII MANO
[9]   MICROEVOLUTIONARY RESPONSES IN EXPERIMENTAL POPULATIONS OF PLANTS TO CO2-ENRICHED ENVIRONMENTS - PARALLEL RESULTS FROM 2 MODEL SYSTEMS [J].
BAZZAZ, FA ;
JASIENSKI, M ;
THOMAS, SC ;
WAYNE, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (18) :8161-8165
[10]  
Binkley D., 1995, AGRONOMY SOC NZ SPEC, Vm10, P1