The many flavors of hyperhomocyst(e)inemia: Insights from Transgenic and inhibitor-based mouse models of disrupted one-carbon metabolism

被引:12
作者
Elmore, C. Lee
Matthews, Rowena G.
机构
[1] Univ Michigan, Inst Life Sci, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Biol Chem, Ann Arbor, MI 48109 USA
关键词
D O I
10.1089/ars.2007.1795
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mouse models that perturb homocysteine metabolism, including genetic mouse models that result in deficiencies of methylenetetrahydrofolate reductase, methionine synthase, methionine synthase reductase, and cystathionine ss-synthase, and a pharmaceutically induced mouse model with a transient deficiency in betainehomocysteine methyl transferase, have now been characterized and can be compared. Although each of these enzyme deficiencies is associated with moderate to severe hyperhomocyst(e)inemia, the broader metabolic profiles are profoundly different. In particular, the various models differ in the degree to which tissue ratios of S-adenosylmethionine to S-adenosylhomocysteine are reduced in the face of elevated plasma homocyst(e)ine, and in the distribution of the tissue folate pools. These different metabolic profiles illustrate the potential complexities of hyperhomocyst(e)inemia in humans and suggest that comparison of the disease phenotypes of the various mouse models may be extremely useful in dissecting the underlying risk factors associated with human hyperhomocyst(e)inemia.
引用
收藏
页码:1911 / 1921
页数:11
相关论文
共 75 条
[1]  
[Anonymous], 1991, Lancet, V338, P131, DOI 10.1016/0140-6736(91)90133-A
[2]   Homocysteine lowering and cardiovascular events after acute myocardial infarction [J].
Bonaa, KH ;
Njolstad, I ;
Ueland, PM ;
Schirmer, H ;
Tverdal, A ;
Steigen, T ;
Wang, H ;
Nordrehaug, JE ;
Arnesen, E ;
Rasmussen, K .
NEW ENGLAND JOURNAL OF MEDICINE, 2006, 354 (15) :1578-1588
[3]  
Brouwer IA, 1999, AM J CLIN NUTR, V69, P99
[4]   Intracellular S-adenosylhomocysteine concentrations predict global DNA hypomethylation in tissues of methyl-deficient cystathionine β-synthase heterozygous mice [J].
Caudill, MA ;
Wang, JC ;
Melnyk, S ;
Pogribny, IP ;
Jernigan, S ;
Collins, MD ;
Santos-Guzman, J ;
Swendseid, ME ;
Cogger, EA ;
James, SJ .
JOURNAL OF NUTRITION, 2001, 131 (11) :2811-2818
[5]   Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition [J].
Chen, ZT ;
Karaplis, AC ;
Ackerman, SL ;
Pogribny, IP ;
Melnyk, S ;
Lussier-Cacan, S ;
Chen, MF ;
Pai, A ;
John, SWM ;
Smith, RS ;
Bottiglieri, T ;
Bagley, P ;
Selhub, J ;
Rudnicki, MA ;
James, SJ ;
Rozen, R .
HUMAN MOLECULAR GENETICS, 2001, 10 (05) :433-443
[6]   Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease [J].
Clarke, R ;
Smith, AD ;
Jobst, KA ;
Refsum, H ;
Sutton, L ;
Ueland, PM .
ARCHIVES OF NEUROLOGY, 1998, 55 (11) :1449-1455
[7]   HYPERHOMOCYSTEINEMIA - AN INDEPENDENT RISK FACTOR FOR VASCULAR-DISEASE [J].
CLARKE, R ;
DALY, L ;
ROBINSON, K ;
NAUGHTEN, E ;
CAHALANE, S ;
FOWLER, B ;
GRAHAM, I .
NEW ENGLAND JOURNAL OF MEDICINE, 1991, 324 (17) :1149-1155
[8]   Inhibition of betaine-homocysteine S-methyltransferase causes hyperhomocysteinemia in mice [J].
Collinsova, Michaela ;
Strakova, Jana ;
Jiracek, Jiri ;
Garrow, Timothy A. .
JOURNAL OF NUTRITION, 2006, 136 (06) :1493-1497
[9]   FOLATE LEVELS AND NEURAL-TUBE DEFECTS - IMPLICATIONS FOR PREVENTION [J].
DALY, LE ;
KIRKE, PN ;
MOLLOY, A ;
WEIR, DG ;
SCOTT, JM .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1995, 274 (21) :1698-1702
[10]   Cerebral vascular dysfunction in methionine synthase-deficient mice [J].
Dayal, S ;
Devlin, AM ;
McCaw, RB ;
Liu, ML ;
Arning, E ;
Bottiglieri, T ;
Shane, B ;
Faraci, FM ;
Lentz, SR .
CIRCULATION, 2005, 112 (05) :737-744