Resistance gene analogues identified through the NBS-profiling method map close to major genes and QTL for disease resistance in apple

被引:96
作者
Calenge, F
Van der Linden, CG
Van de Weg, E
Schouten, HJ
Van Arkel, G
Denancé, C
Durel, CE
机构
[1] Inst Natl Rech Agron, UMR GenHort, F-49071 Beaucouze, France
[2] Plant Res Int, NL-6700 AA Wageningen, Netherlands
关键词
D O I
10.1007/s00122-004-1891-6
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
We used a new method called nucleotide-binding site (NBS) profiling to identify and map resistance gene analogues (RGAs) in apple. This method simultaneously allows the amplification and the mapping of genetic markers anchored in the conserved NBS-encoding domain of plant disease resistance genes. Ninety-four individuals belonging to an F-1 progeny derived from a cross between the apple cultivars 'Discovery' and 'TN10-8' were studied. Two degenerate primers designed from the highly conserved P-loop motif within the NBS domain were used together with adapter primers. Forty-three markers generated with NBS profiling could be mapped in this progeny. After sequencing, 23 markers were identified as RGAs, based on their homologies with known resistance genes or NBS/leucine-rich-repeat-like genes. Markers were mapped on 10 of the 17 linkage groups of the apple genetic map used. Most of these markers were organized in clusters. Twenty-five markers mapped close to major genes or quantitative trait loci for resistance to scab and mildew previously identified in different apple progenies. Several markers could become e. efficient tools for marker-assisted selection once converted into breeder-friendly markers. This study demonstrates the efficiency of the NBS-profiling method for generating RGA markers for resistance loci in apple.
引用
收藏
页码:660 / 668
页数:9
相关论文
共 42 条
[1]  
ALSTON FH, 1983, IOBC WPRS B, V6, P87
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   Localisation of genes for resistance against Blumeria graminis f.sp hordei and Puccinia graminis in a cross between a barley cultivar and a wild barley (Hordeum vulgare ssp spontaneum) line [J].
Backes, G ;
Madsen, LH ;
Jaiser, H ;
Stougaard, J ;
Herz, M ;
Mohler, V ;
Jahoor, A .
THEORETICAL AND APPLIED GENETICS, 2003, 106 (02) :353-362
[4]   QTLs for tomato powdery mildew resistance (Oidium lycopersici) in Lycopersicon parviflorum G1.1601 co-localize with two qualitative powdery mildew resistance genes [J].
Bai, YL ;
Huang, CC ;
van der Hulst, R ;
Meijer-Dekens, F ;
Bonnema, G ;
Lindhout, P .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2003, 16 (02) :169-176
[5]   Cloning and linkage mapping of resistance gene homologues in apple [J].
Baldi, P ;
Patocchi, A ;
Zini, E ;
Toller, C ;
Velasco, R ;
Komjanc, M .
THEORETICAL AND APPLIED GENETICS, 2004, 109 (01) :231-239
[6]   The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety [J].
Belfanti, E ;
Silfverberg-Dilworth, E ;
Tartarini, S ;
Patocchi, A ;
Barbieri, M ;
Zhu, J ;
Vinatzer, BA ;
Gianfranceschi, L ;
Gessler, C ;
Sansavini, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (03) :886-890
[7]   Genetics of host-pathogen relationships between Venturia inaequalis races 6 and 7 and Malus species [J].
Bénaouf, G ;
Parisi, L .
PHYTOPATHOLOGY, 2000, 90 (03) :236-242
[8]   Quantitative trait loci (QTL) analysis reveals both broad-spectrum and isolate-specific QTL for scab resistance in an apple progeny challenged with eight isolates of Venturia inaequalis [J].
Calenge, F ;
Faure, A ;
Goerre, M ;
Gebhardt, C ;
Van de Weg, WE ;
Parisi, L ;
Durel, CE .
PHYTOPATHOLOGY, 2004, 94 (04) :370-379
[9]  
CALENGE F, 2003, P 11 INT C MOL PLANT
[10]   The isolation and mapping of disease resistance gene analogs in maize [J].
Collins, NC ;
Webb, CA ;
Seah, S ;
Ellis, JG ;
Hulbert, SH ;
Pryor, A .
MOLECULAR PLANT-MICROBE INTERACTIONS, 1998, 11 (10) :968-978